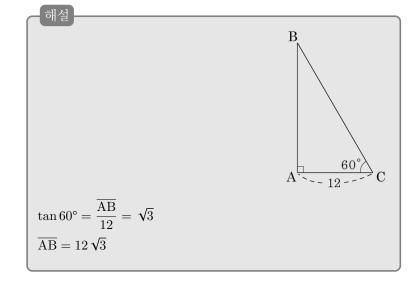

1. 다음 중 cosA 와 값이 같은 삼각비는?


① $\sin A$ ② $\sin B$ ③ $\cos B$ ④ $\tan A$ ⑤ $\tan B$

 $\sin B = \frac{8}{17}$, $\cos A = \frac{8}{17}$ 이므로, $\sin B = \cos A$ 이다.

- **2.** 한 직각삼각형에서 $\cos A = \frac{5\sqrt{3}}{9}$ 일 때, $\tan A$ 의 값은?
 - ① $\frac{\sqrt{2}}{4}$ ② $\frac{\sqrt{2}}{5}$ ③ $\frac{\sqrt{2}}{6}$ ④ $\frac{\sqrt{2}}{7}$ ⑤ $\frac{\sqrt{2}}{8}$

$$\tan A = \frac{\sqrt{6}}{5\sqrt{3}} = \frac{\sqrt{2}}{5}$$

4. 다음 그림과 같이 반지름의 길이가 1 인 사분원에서 $\tan x$ 를 나타내는 선분은?

⑤ CD

 $\tan x = \frac{\overline{AB}}{\overline{OB}} = \frac{\overline{CD}}{\overline{OD}} = \overline{CI}$

- 5. 다음 삼각비의 값이 가장 작은 것은?
 - $\bigcirc 1 \sin 30^{\circ}$ $\bigcirc 2 \cos 30^{\circ}$ $\bigcirc 3 \sin 90^{\circ}$ $\bigcirc 4 \tan 45^{\circ}$ $\bigcirc 5 \tan 50^{\circ}$
 - 해설

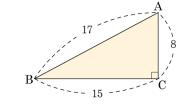
 $\sin 30^\circ = \frac{1}{2}, \cos 30^\circ = \frac{\sqrt{3}}{2}, \sin 90^\circ = 1, \tan 45^\circ = 1,$ $\tan 50^\circ > \tan 45^\circ = 1$ 이므로 가장 작은 것은 $\sin 30^\circ$ 이다.

 $\sqrt{2}$ ② $\sqrt{3}$ ③ 2 ④ 3 ⑤ 5

$$\left(\frac{1}{2} \div \frac{\sqrt{3}}{2}\right) \times \sqrt{3} + 1 \div \left(\frac{1}{2} \times \frac{1}{2}\right)$$

$$= \frac{1}{\sqrt{3}} \times \sqrt{3} + 1 \times 4 = 5$$

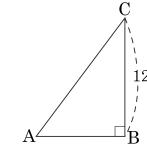
7. 다음 삼각비의 표를 보고 $\sin 70^{\circ} + \cos 50^{\circ} \times \sin 25^{\circ} + \tan 70^{\circ}$ 의 값을 구하면?


각도	sin	cos	tan
$25\degree$	0.42	0.90	0.46
50°	0.76	0.64	1.19
70°	0.93	0.34	2.74

3.9388 ① 3.9188 ② 3.9288 **④** 3.9488 **⑤** 3.9588

= 3.9388

(준식) = $0.93 + 0.64 \times 0.42 + 2.74$


8. 다음 그림과 같은 직각삼각형 ABC 에서 옳지 <u>않은</u> 것은 ?

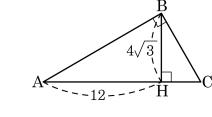
- ① $\sin A = \frac{15}{17}$ ② $\tan A = \frac{15}{8}$ ③ $\sin A + \cos A = \frac{23}{17}$ ④ $\sin B = \frac{8}{15}$ ⑤ $\tan B = \frac{8}{15}$

$$4 \sin B = \frac{8}{17}$$

9. 다음 그림과 같은 직각삼각형 ABC 에서 $\tan A = \frac{4}{3}$ 이고, \overline{BC} 가 12일 때, \overline{AC} 의 길이는?

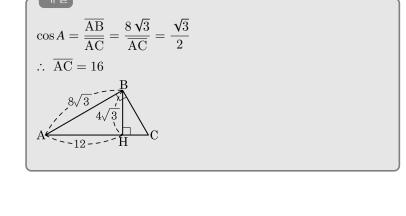
① 15 ② 13 ③ 12 ④ 11 ⑤ 10

 $an A = {\overline{BC} \over \overline{AB}} = {12 \over \overline{AB}} = {4 \over 3}$ 이므로 $12 \times 3 = 4 \times \overline{AB}$ 이다. $\Rightarrow \overline{AB} = 9$ 따라서 $\overline{AC} = \sqrt{9^2 + 12^2} = 15$ 이다.

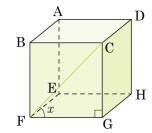

497 AC = 497 + 127 = 13 99

10. $\cos x = \frac{2}{5}$ 일 때, $\frac{\sin x}{\tan x}$ 의 값은?

① $\frac{2}{3}$ ② $\frac{2}{5}$ ③ $\frac{4}{3}$ ④ $\frac{5}{3}$ ⑤ $\frac{10}{3}$

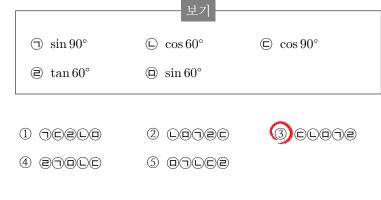

 $\cos x = \frac{2}{5}, \tan x = \frac{\sqrt{21}}{2}, \sin x = \frac{\sqrt{21}}{5}$ $\frac{\sin x}{\tan x} = \frac{\frac{\sqrt{21}}{5}}{\frac{\sqrt{21}}{2}} = \frac{2}{5}$

11. 다음 그림에서 $\cos A=\frac{\sqrt{3}}{2}$ 이고, $\overline{\rm AH}=12,\;\overline{\rm BH}=4\,\sqrt{3}\;\rm 일\;\vec{\rm m},\;\overline{\rm AC}\;\rm 의 \rm \c 2ol-?$



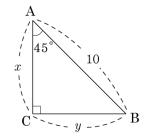
① 10 ② 12 ③ 14

⑤ 18


12. 다음 그림은 한 변의 길이가 1 인 정육면 체이다. $\angle CFG = x$ 일 때, $\sin x$ 의 값을 구하면?

- ① $\frac{\sqrt{2}}{2}$ ② $\frac{2\sqrt{2}}{3}$ ③ $\frac{2}{3}$ ④ $\frac{\sqrt{6}}{2}$
- ⑤ 2

 $\overline{\text{CF}} = \sqrt{2}, \overline{\text{CG}} = 1$ 이므로 $\sin x = \frac{1}{\sqrt{2}} = \frac{\sqrt{2}}{2}$ 이다.


13. 다음 삼각비의 값을 크기가 작은 것부터 차례로 나열한 것은?

্রাপ্র (a) $\sin 90^\circ = 1$ (b) $\cos 60^\circ = \frac{1}{2}$ (c) $\cos 90^\circ = 0$ (d) $\tan 60^\circ = \sqrt{3}$ (d) $\sin 60^\circ = \frac{\sqrt{3}}{2}$ (e) $\cos 90^\circ <$ (f) $\cos 60^\circ <$ (g) $\sin 60^\circ <$ (g) $\sin 90^\circ <$ (e) $\tan 60^\circ$ 14. 다음 식의 값은? $\sin 60 ° \times \sin^2 30 ° + \cos 30 ° \times \sin^2 60 °$

① 1 ② $\frac{\sqrt{3}}{2}$ ③ $\frac{\sqrt{2}}{2}$ ④ $\frac{1}{2}$ ⑤ 0

 $\sin 60^{\circ} \times \sin^2 30^{\circ} + \cos 30^{\circ} \times \sin^2 60^{\circ}$ $= \frac{\sqrt{3}}{2} \times \left(\frac{1}{2}\right)^2 + \frac{\sqrt{3}}{2} \times \left(\frac{\sqrt{3}}{2}\right)^2$ $= \frac{\sqrt{3}}{8} + \frac{3\sqrt{3}}{8} = \frac{4\sqrt{3}}{8} = \frac{\sqrt{3}}{2}$

① 80 ② 90 ③ 100 ④ 120

⑤ 140

해설

$$\sin 45^{\circ} = \frac{y}{10} = \frac{\sqrt{2}}{2}, \ y = \frac{10\sqrt{2}}{2} = 5\sqrt{2}$$

$$\cos 45^{\circ} = \frac{x}{10} = \frac{\sqrt{2}}{2}, \ x = \frac{10\sqrt{2}}{2} = 5\sqrt{2}$$

$$\therefore 2xy = 2 \times 5\sqrt{2} \times 5\sqrt{2} = 100$$

- 16. 경사면의 기울어진 정도를 나타내는 경사도는 수평거리와 수직거리의 비율에 의해 결정된다. 다음 중 경사도와 가장 관계가 깊은 것은?
 - $\underbrace{1}{\sin A}$

 \bigcirc sin A

- 3 tan A
- $\Im \frac{1}{\cos A}$

해설 수평거리와 수직거리의 비율은 직각삼각형에서 밑변과 높이의

비율로 생각할 수 있으므로 $\tan A$ 와 가장 관계가 깊다.

17. $\sin 90^{\circ} + \cos 0^{\circ} - \tan 0^{\circ} = A$, $\sin 0^{\circ} + \tan 0^{\circ} + \cos 90^{\circ} = B$ 라 할 때, *AB* 의 값은?

- ① -2 ② -1 ③ 0 ④ 1 ⑤ 2

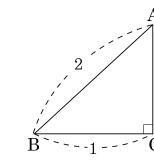
A = 1 + 1 - 0 = 2 , B = 0 + 0 + 0 = 0 이므로

 $\therefore AB = 2 \times 0 = 0$

18. $0^{\circ} < A < 90^{\circ}$ 일 때, 다음을 간단히 하면? $\sqrt{(\cos A + 1)^2} + \sqrt{(\cos A - 1)^2} + \sqrt{4\cos^2 A}$

① $\cos A - 1$ ② $\cos A + 2$

 $4 \cos A + 1$


- $\bigcirc 2\cos A + 2$

 $\Im 2\cos A - 1$

 $0^{\circ} < A < 90^{\circ}, \ 0 < \cos A < 1$

 $\sqrt{(\cos A + 1)^2} + \sqrt{(\cos A - 1)^2} + \sqrt{4\cos^2 A}$ = \cos A + 1 - (\cos A - 1) + 2\cos A $=2\cos A+2$

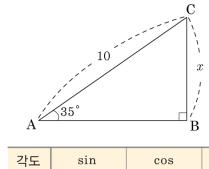
19. $\angle C$ 가 직각인 직각삼각형 ABC 에서 $\overline{AB}=2$, $\overline{BC}=1$ 라 할 때, $(\sin B + \cos B)(\sin A - 1)$ 의 값은?

- ① $-\frac{\sqrt{2}}{4}$ ② $-\frac{1+\sqrt{2}}{4}$ ③ $-\frac{1+2\sqrt{3}}{4}$ ③ $-\frac{3\sqrt{3}}{4}$

$$\overline{AC} = \sqrt{2^2 - 1^2} = \sqrt{3}$$

$$(\sin R + \cos R) (\sin A - \cos R)$$

$$(\sin B + \cos B) (\sin A - 1) = \left(\frac{\sqrt{3}}{2} + \frac{1}{2}\right) \left(\frac{1}{2} - 1\right)$$
$$= \left(\frac{\sqrt{3} + 1}{2}\right) \left(-\frac{1}{2}\right)$$


$$= \left(\frac{1}{2}\right) \left(-\frac{1}{2}\right)$$
$$= -\frac{1+\sqrt{3}}{4}$$

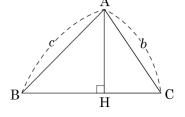
- ${f 20}$. 이차방정식 $x^2-3=0$ 을 만족하는 x 의 값이 an A 의 값과 같을 때, $\sin A\cos A$ 의 값은? (단, 0° < A < 90°)
 - ① $\frac{1}{2}$ ② $\frac{\sqrt{3}}{2}$ ③ $\frac{1}{4}$ ④ $\frac{\sqrt{3}}{4}$ ⑤ $\frac{3\sqrt{3}}{4}$

 $x^2 - 3 = 0$ od A $x^2 = 3$, $\therefore x = \sqrt{3} \ (\because x > 0)$ $\tan A = \sqrt{3}$, $\therefore A = 60^{\circ} \ (\because 0^{\circ} < A < 90^{\circ})$

 $\sin A \cos A = \sin 60^{\circ} \times \cos 60^{\circ} = \frac{\sqrt{3}}{2} \times \frac{1}{2} = \frac{\sqrt{3}}{4}$

21. 다음 그림의 $\triangle ABC$ 에서 삼각비의 표를 보고 x 의 값을 구하면?

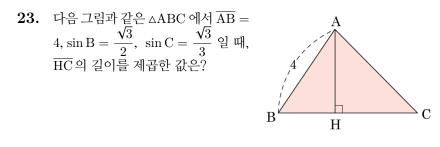
54°	0.8090	0.5878	1.3764
55°	0.8192	0.5736	1.4281
56°	0.8290	0.5592	1.4826

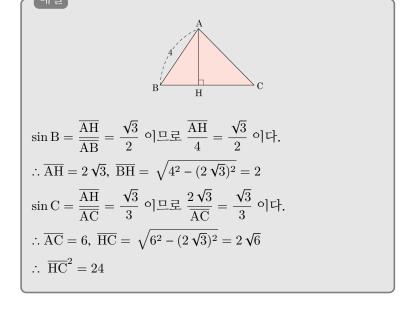

② 5.736 ③ 5.878 ④ 8.09 ⑤ 8.29

해설

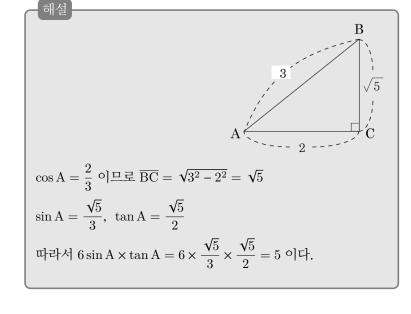
① 8.192

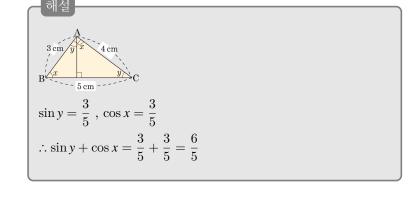
 $\angle C = 55^{\circ}$ 이므로 $x = 10 \times \cos 55^{\circ} = 10 \times 0.5736 = 5.736$

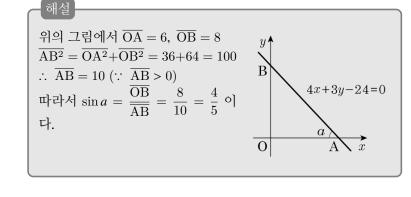

${f 22}$. 다음 중 그림의 ΔABC 에서 \overline{BC} 의 길이를 나타내는 것은?


- ① $c \sin B + b \sin C$
- ② $c \sin B + b \cos C$
- $\Im c \tan B + b \tan C$

 $\triangle ABH$ 에서 $\cos B = \frac{\overline{BH}}{c}, \overline{BH} = c \cos B$ \triangle AHC 에서 $\cos \mathbf{C} = \frac{\overline{\mathbf{CH}}}{b}, \overline{\mathbf{CH}} = b \cos \mathbf{C}$


따라서 $\overline{\mathrm{BC}} = \overline{\mathrm{BH}} + \overline{\mathrm{CH}} = c \cos \mathrm{B} + b \cos \mathrm{C}$ 이다.


① 6 ② 9 ③ 12 ④ 18 ⑤ 24


- ① 2
- **4**5 ② 3 ③ 4

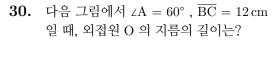
- ① $\frac{3}{5}$ ② $\frac{4}{5}$ ③ 1 ④ $\frac{6}{5}$ ⑤ $\frac{7}{5}$

- **26.** 직선 4x + 3y 24 = 0 의 그래프가 x 축과 이루는 예각의 크기를 a 라 할 때, sin a 의 값은?
 - ① $\frac{4}{3}$ ② $\frac{5}{3}$ ③ $\frac{2}{5}$ ④ $\frac{3}{5}$

①
$$\frac{11\sqrt{5}}{2}$$
 ④ $\frac{14\sqrt{5}}{2}$

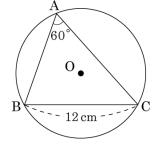
①
$$\frac{11\sqrt{3}}{2}$$
 ② $\frac{12\sqrt{3}}{2}$ ③ $\frac{13\sqrt{3}}{2}$ ④ $\frac{14\sqrt{3}}{2}$ ⑤ $\frac{15\sqrt{3}}{2}$

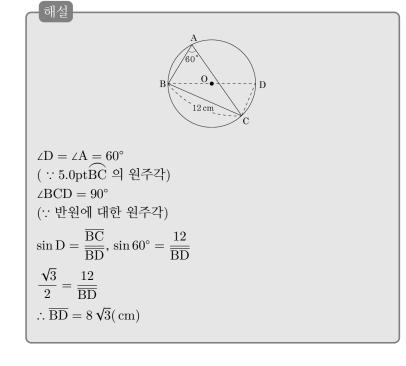
$$(\stackrel{>}{\mathbb{T}} \stackrel{\searrow}{}) = 2 \times \frac{\sqrt{3}}{2} \times 2 \div \left(\frac{\sqrt{3}}{3}\right)^2 + \frac{1}{2} \times \sqrt{3}$$
$$= 2\sqrt{3} \div \frac{1}{3} + \frac{\sqrt{3}}{2}$$
$$= 6\sqrt{3} + \frac{\sqrt{3}}{2} = \frac{13\sqrt{3}}{2}$$


28. 다음 중 $2 \sin 60 \circ \tan 30 \circ \cos 0 \circ + 7$ 의 값은?

① 3 ② 5 ③ 6 ④8 ⑤ 10

(준식) = $2 \times \frac{\sqrt{3}}{2} \times \frac{1}{\sqrt{3}} \times 1 + 7 = 1 + 7 = 8$


- **29.** 어떤 삼각형은 세 내각의 크기의 비가 2:3:4이다. 내각 중에서 중간 각의 크기를 A라 할 때, $\sin A$: $\tan A$ 는 ?
- ① 1:2 ② 2:3 ③ $\sqrt{3}:2$
- (4) $\sqrt{2}:3$ (5) 3:2

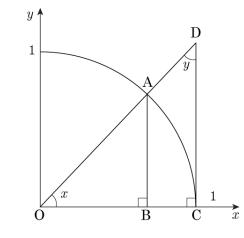

해설 $A = 180^{\circ} \times \frac{3}{9} = 60^{\circ}$ $\sin 60^{\circ} : \tan 60^{\circ} = \frac{\sqrt{3}}{2} : \sqrt{3}$ $= \frac{\sqrt{3}}{2} : \frac{2\sqrt{3}}{2}$ = 1 : 2

- ① $2\sqrt{3}$ cm
- ② $3\sqrt{3}$ cm
- $3 4\sqrt{3} \, \mathrm{cm}$ $8\sqrt{3} \, \mathrm{cm}$
- $4 6\sqrt{3} \, \mathrm{cm}$

31. 다음 그림에서 $\overline{AH}=10$, $\angle B=30^\circ$, $\angle ACH=60^\circ$ 일 때, $\triangle ABC$ 의 넓이는?

- ① $\frac{100\sqrt{2}}{3}$ ② $\frac{200\sqrt{2}}{3}$ ③ $\frac{100\sqrt{3}}{3}$ ④ $\frac{200\sqrt{3}}{3}$ ⑤ 100

 $\angle BAH = 60^{\circ}, \angle CAH = 30^{\circ}$


 $\Delta {
m BAH}$ 에서 $\overline{
m BH} = 10 an 60^{\circ} = 10 \sqrt{3}$ $\Delta {
m CAH}$ 에서 $\overline{
m CH}=10 an 30^{\circ}=rac{10}{\sqrt{3}}$ $\therefore \overline{\mathrm{BC}} = \overline{\mathrm{BH}} - \overline{\mathrm{CH}}$

 $=10\sqrt{3}-\frac{10}{\sqrt{3}}$

 $=10\sqrt{3}\left(1-\frac{1}{3}\right)$

 $=\frac{20\,\sqrt{3}}{3}$ 따라서 $\triangle ABC$ 의 넓이는 $\frac{20\,\sqrt{3}}{3}\times 10\times \frac{1}{2}=\frac{100\,\sqrt{3}}{3}$ 이다.

32. 다음 그림에서 반지름의 길이가 1 인 사분원을 이용하여 삼각비의 값을 선분의 길이로 나타낸 것 중 옳지 <u>않은</u> 것은?

- ① $\sin x = \overline{AB}$ ④ $\sin y = \overline{OB}$
- - $\overline{\mathrm{C}}$

 $\Im \tan x = \overline{\text{CD}}$

- 해설

33. 다음 중 삼각비의 값의 대소 관계로 옳지 <u>않은</u> 것을 모두 고르면?

 $3 \sin 45^{\circ} = \cos 45^{\circ}$

① $\sin 20^{\circ} < \sin 49^{\circ}$

- $\cos 10^{\circ} < \cos 47^{\circ}$
- (5) tan 23° < tan 73°
- $(4) \cos 60^{\circ} > \tan 30^{\circ}$

 $0^{\circ} \le x \le 90^{\circ}$ 인 범위에서 x 의 값이 증가하면 $\sin x, \tan x$ 의 값은

해설

각각 증가하고, $\cos x$ 의 값은 감소한다.

- 34. 45 ° < x < 90 ° 일 때, $\sqrt{1-2\sin x\cos x}+\sqrt{1+2\sin x\cos x}$ 를 간단히 하면?
 - ① $-\sin x$ $\textcircled{4} 2\sin x \qquad \qquad \textcircled{3} \ 3\sin x$
- $\bigcirc -2\sin x$
- $\Im \sin x$

 $45\,^{\circ} < x < 90\,^{\circ}$ 일 때, $0 < \cos x < \sin x\,^{\circ}$ 이므로

 $\sqrt{1 - 2\sin x \cos x} + \sqrt{1 + 2\sin x \cos x}$ $= \sqrt{\sin^2 x + \cos^2 x - 2\sin x \cos x}$

- $+\sqrt{\sin^2 x + \cos^2 x + 2\sin x \cos x}$ $= \sqrt{(\sin x - \cos x)^2} + \sqrt{(\sin x + \cos x)^2}$
- $= (\sin x \cos x) + (\sin x + \cos x)$ $=2\sin x$

35. 다음 삼각비 표를 보고 $\cos 25^\circ + \sin 25^\circ \times \sin 50^\circ - \tan 50^\circ$ 의 값을 소수 둘째 자리까지 구하면?

각도	sin	cos	tan
25°	0.42	0.90	0.46
50°	0.76	0.64	1.19
70°	0.93	0.34	2.74

40.03

⑤ 0.02

 $\cos 25$ ° + $\sin 25$ ° × $\sin 50$ ° - $\tan 50$ ° = $0.90 + 0.42 \times 0.76 - 1.19$

① 0.06 ② 0.05 ③ 0.04

= 0.90 + 0.3192 - 1.19= 0.0292

≒ 0.03