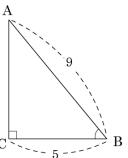
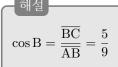

1. $\sin(90\,^{\circ}-A) = \frac{7}{9}$ 일 때, $\tan A$ 의 값을 구하여라. (단, $0\,^{\circ} < A < 90\,^{\circ}$)

①
$$\frac{2\sqrt{2}}{7}$$
 ② $\frac{4\sqrt{2}}{7}$ ③ $\frac{2\sqrt{2}}{9}$ ④ $\frac{4\sqrt{2}}{9}$ ⑤ $\frac{7\sqrt{2}}{9}$

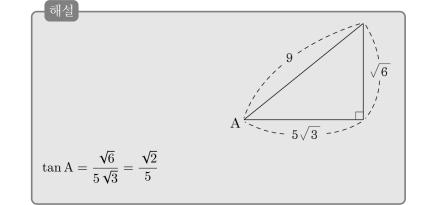
2. 다음과 같이 $\angle C = 90^\circ$ 인 직각삼각형 $\triangle ABC$ 에서 $\sin A - \cos A$ 의 값으로 바른 것은?


①
$$-\frac{1}{7}$$
 ② $-\frac{4}{5}$ ③ $-\frac{1}{5}$ ④ $-\frac{2}{3}$ ⑤ $-\frac{3}{4}$


$$\sin A = \frac{6}{10} = \frac{3}{5}, \cos A = \frac{8}{10} = \frac{4}{5}$$

$$\therefore \sin A - \cos A = \frac{3}{5} - \frac{4}{5} = -\frac{1}{5}$$

6. 다음과 같이 ∠C가 90°인 직각삼각형 ΔABC에서 cos B의 값은?


- 2
- $3\frac{5}{8}$

4. 한 직각삼각형에서 $\cos A = \frac{5\sqrt{3}}{9}$ 일 때, $\tan A$ 의 값은?

①
$$\frac{\sqrt{2}}{4}$$
 ② $\frac{\sqrt{2}}{5}$ ③ $\frac{\sqrt{2}}{6}$ ④ $\frac{\sqrt{2}}{7}$ ⑤ $\frac{\sqrt{2}}{8}$

①
$$3\sqrt{3}$$
 ② $2\sqrt{2}$ ③ $\sqrt{3}$ ④ $\sqrt{2}$ ⑤

$$\sin^2 30^\circ + \sin^2 60^\circ - \tan 30^\circ \times \tan 60^\circ$$

$$= \frac{1}{2}^2 + \frac{\sqrt{3}^2}{2} - \frac{1}{\sqrt{3}} \times \sqrt{3}$$

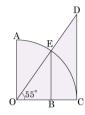
$$= \frac{1}{4} + \frac{3}{4} - 1 = 0$$

•
$$\cos 60^{\circ} \times \tan 60^{\circ} + \sin 60^{\circ}$$
 을 계산하면?

$$3 \ 2 \qquad 4 \ 2\sqrt{2} \qquad 5 \ 2\sqrt{3}$$

(준식) =
$$\frac{1}{2} \times \sqrt{3} + \frac{\sqrt{3}}{2} = \sqrt{3}$$

7. $\sin 0^{\circ} \times \cos 60^{\circ} + \cos 0^{\circ} \times \tan 45^{\circ} - \sin 45^{\circ} \times \tan 60^{\circ} = ?$

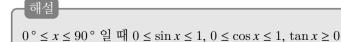

①
$$1 - \frac{\sqrt{3}}{2}$$
 ② $1 + \frac{\sqrt{3}}{2}$ ③ $1 - \frac{\sqrt{3}}{2}$ ④ $1 + \frac{\sqrt{6}}{2}$ ⑤ $2 - \frac{\sqrt{3}}{2}$

sin 0° × cos 60° + cos 0° × tan 45° - sin 45° × tan 60°
$$=0 \times \frac{1}{2} + 1 \times 1 - \frac{\sqrt{2}}{2} \times \sqrt{3}$$

$$\sqrt{6}$$

9. 다음 그림은 반지름의 길이가 1 인 사분원 위에 직각삼각형을 그린 것이다. tan 55° 를 선분으로 나타낸 것은?

$$\tan 55^{\circ} = \frac{\overline{\text{CD}}}{\overline{\text{OC}}} = \frac{\overline{\text{CD}}}{1} = \overline{\text{CD}}$$


- - $(1) -1 \le \cos x \le 0$

10. $0^{\circ} \le x \le 90^{\circ}$ 일 때, 다음 중 옳은 것은?

 $\bigcirc 0 \le \sin x \le 1$

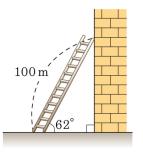
 $3 0 < \tan x < 1$

 $4 -2 \le \sin x \le -1$

11. 다음 삼각비의 값이 가장 작은 것은?

② cos 30°

③ sin 90°


해설
$$\sin 30^\circ = \frac{1}{2}, \cos 30^\circ = \frac{\sqrt{3}}{2}, \sin 90^\circ = 1, \tan 45^\circ = 1,$$

$$\tan 50^\circ > \tan 45^\circ = 1$$
 이므로 가장 작은 것은 $\sin 30^\circ$ 이다.

①
$$\sqrt{2}$$
 ② $\sqrt{3}$ ③ 2 ④ 3 ⑤ 5

$$\left(\frac{1}{2} \div \frac{\sqrt{3}}{2}\right) \times \sqrt{3} + 1 \div \left(\frac{1}{2} \times \frac{1}{2}\right)$$

$$= \frac{1}{\sqrt{3}} \times \sqrt{3} + 1 \times 4 = 5$$

13. 길이가 100 m 인 사다리가 다음 그림과 같이 벽에 걸쳐 있다. 사다리와 지면이 이루는 각의 크기가 62°일 때, 지면으로부터 사다리가 닿는 곳까지의 높이를 구하면? (단, sin 62°=0.8829, cos 62°=0.4695, tan 62°=1.8807로 계산하고, 소수 첫째 자리에서 반올림한다.)

③ 84 (m)

(높이) = 100 sin 62° = 100 × 0.8829 ≒ 88 (m)

14. 다음 표를 보고 $\cos x = 0.7193$ 을 만족하는 x 에 대하여 $\tan x$ 의 값은?

각도	sin	cos	tan
44°	0.6947	0.7193	0.9657
45°	0.7071	0.7071	1.0000
46°	0.7193	0.6947	1.0355
47°	0.7314	0.6820	1.0724

0.9657

2 1.0000

31.0355

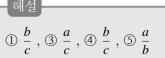
4 1.0724

⑤ 1.9657

해설____

 $\cos 44^{\circ} = 0.7193$

 $\therefore x = 44^{\circ}$


따라서 $\tan 44$ ° = 0.9657 이다.

 $(2)\sin A = \frac{a}{3}$

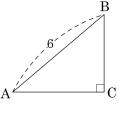
①
$$\sin B = \frac{a}{b}$$

$$=\frac{a}{b}$$

$$3 \cos B = \frac{b}{a}$$

해설
$$\triangle ABC \curvearrowright \triangle HBA \hookrightarrow \triangle HAC \circ \Box \Box \Box \Box$$

$$\angle ABH = y, \angle ACH = x$$

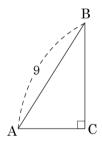

$$\overline{BC} = \sqrt{2^2 + (\sqrt{5})^2} = 3$$

$$\therefore \cos x + \cos y = \frac{\overline{AC}}{\overline{BC}} + \frac{\overline{AB}}{\overline{BC}}$$

$$= \frac{2}{3} + \frac{\sqrt{5}}{3}$$

$$= \frac{2 + \sqrt{5}}{3}$$

17. $\sin A = \frac{\sqrt{2}}{2}$ 인 직각삼각형 ABC 에서 $\cos A$, tan A 의 값을 각각 구하면? (단, 0° < A < 90°)


$$3 \cos A = 2\sqrt{3}, \tan A = 1$$

①
$$\cos A = \frac{\sqrt{3}}{2}$$
, $\tan A = 1$ ② $\cos A = \frac{\sqrt{2}}{2}$, $\tan A = 2$ ③ $\cos A = 2\sqrt{3}$, $\tan A = 1$ ④ $\cos A = 3\sqrt{3}$, $\tan A = \frac{1}{2}$

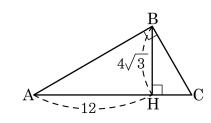
$$\sin A = \frac{\overline{BC}}{\overline{AB}} = \frac{\sqrt{2}}{2}$$
 이므로 $\overline{BC} = \overline{AB} \times \sin A = 6 \times \frac{\sqrt{2}}{2} = 3\sqrt{2}$ 이다.

피타고라스 정리에 의해
$$\overline{AC} = \sqrt{6^2 - (3\sqrt{2})^2} = 3\sqrt{2}$$
 이다.
따라서 $\cos A = \frac{3\sqrt{2}}{6} = \frac{\sqrt{2}}{2}, \tan A = \frac{\sin A}{\cos A} = \frac{3\sqrt{2}}{3\sqrt{2}} = 1$ 이다.

18. $\cos A = \frac{2}{3}$ 인 직각삼각형 ABC 에서 $\overline{AB} = 9$ 일 때, △ABC 의 넓이는? (단, 0° < A < 90°)

①
$$9\sqrt{3}$$

②
$$9\sqrt{5}$$
 ③ $7\sqrt{5}$ ④ $9\sqrt{7}$ ⑤ $18\sqrt{5}$


$$\cos A = \frac{\overline{AC}}{\overline{AB}} = \frac{2}{3}$$
 이므로 $\overline{AC} = \overline{AB} \times \cos A = 9 \times \frac{2}{3} = 6$ 이다.

피타고라스 정리에 의해 $\overline{\mathrm{BC}} = \sqrt{9^2 - 6^2} = \sqrt{45} = 3\sqrt{5}$ 이다.

따라서 삼각형 ABC 의 넓이는 $6 \times 3\sqrt{5} \times \frac{1}{2} = 9\sqrt{5}$ 이다.

19. 다음 그림에서 $\cos A = \frac{\sqrt{3}}{2}$ 이고,

$$\overline{\mathrm{AH}}=12,\;\overline{\mathrm{BH}}=4\,\sqrt{3}$$
 일 때, $\overline{\mathrm{AC}}$ 의 길이는?

① 10 ② 12 ③ 14 ⑤ 18

েন্দ্র
$$\cos A = \frac{\overline{AB}}{\overline{AC}} = \frac{8\sqrt{3}}{\overline{AC}} = \frac{\sqrt{3}}{2}$$

$$\therefore \overline{AC} = 16$$

$$8\sqrt{3}$$

$$4\sqrt{3}$$

$$4\sqrt{3}$$

$$A$$

$$-12$$

$$C$$

다음 그림은 한 변의 길이가 1 인 정육면 체이다. ∠CFG = x 일 때, sin x 의 값을 구하면?

B

C

F

 $\frac{2}{3}$

(5) 2

20.

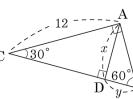
해설
$$\overline{CF} = \sqrt{2}, \overline{CG} = 1 \text{ 이므로}$$

$$\sin x = \frac{1}{\sqrt{2}} = \frac{\sqrt{2}}{2} \text{ 이다.}$$

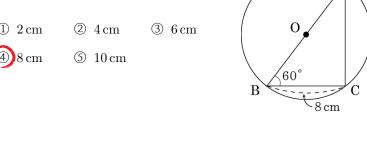
①
$$x = 5, y = \sqrt{3}$$

② $x = 5, y = 2\sqrt{3}$
③ $x = 6, y = \sqrt{3}$
④ $x = 6, y = 2\sqrt{3}$

 $x = 6, v = 3\sqrt{3}$


$$\triangle ADC$$
에서 $\sin 30^\circ = \frac{1}{2}$

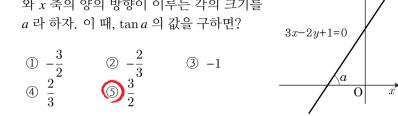
$$\frac{x}{12} = \frac{1}{2} \qquad \therefore \quad x = 6$$


$$\triangle ABD$$
에서 $\tan 60^\circ = \sqrt{3}$

$$\frac{x}{y} = \sqrt{3}, \quad \frac{6}{y} = \sqrt{3}$$

$$\therefore \quad y = \frac{6}{\sqrt{3}} = \frac{6\sqrt{3}}{3} = 2\sqrt{3}$$

22. 다음 그림에서 $\overline{BC} = 8 \text{ cm}$, $\angle B = 60^{\circ}$ 일 때, 원 O 의 반지름의 길이는? ① 2 cm ② 4 cm ③ 6 cm



$$\overline{AB}=rac{8}{\cos 60^\circ}=16$$

따라서 $\overline{AB}=16(\,\mathrm{cm})$ 이므로 반지름인 $\overline{AO}=8\,\mathrm{cm}$

반원에 대한 원주각의 크기는 90° 이므로 ∠ACB = 90°

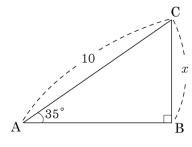
23. 다음 그림과 같이 3x - 2y + 1 = 0 의 그래프 와 x 축의 양의 방향이 이루는 각의 크기를 a 라 하자 이 때 $\tan a$ 의 값을 구하면?

따라서 $\tan a = \frac{3}{2}$ 이다.

24. 좌표평면 위에 두 점 A(5, 3), B(2, 1) 을 지나는 직선이 x 축의 양의 방향과 이루는 각의 크기를 θ 라 할 때, $\tan \theta$ 의 값을 구하면?

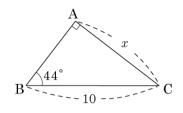
①
$$\frac{3}{4}$$
 ② $\frac{4}{5}$ ③ $\frac{4\sqrt{13}}{5\sqrt{13}}$ ③ $\frac{5\sqrt{13}}{5\sqrt{13}}$

25. 직각삼각형 ABC 에서 $\overline{AB} = 8 \text{cm}$, $\overline{BC} = 4\sqrt{3}$ cm 일 때, $\angle B$ 의 크기는?



 $\cos x = \frac{4\sqrt{3}}{8} = \frac{\sqrt{3}}{2}$ 이므로 $x = 30^{\circ}$ 이다.

26. 다음 그림의 \triangle ABC 에서 삼각비의 표를 보고 x 의 값을 구하면?


각도	sin	cos	tan
54°	0.8090	0.5878	1.3764
55°	0.8192	0.5736	1.4281
56°	0.8290	0.5592	1.4826

① 8.192

 $x = 10 \times \cos 55^{\circ} = 10 \times 0.5736 = 5.736$

27. 다음 삼각비의 표를 보고 \triangle ABC 에서 x 의 값을 구하면?

각도	sin	cos	tan
44	0.6947	0.7193	0.9657
45	0.7071	0.7071	1.0000
46	0.7193	0.6947	1.0355

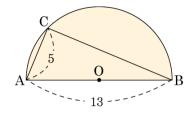
① 1.022

② 6.947

③ 7.071

⑤ 10.355

해설

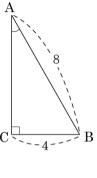

 $x = 10 \times \sin 44^{\circ} = 10 \times 0.6947 = 6.947$

28. 다음 그림과 같이 AB 가 지름인 반 원 O 에서 sin A 의 값을 구하면?

①
$$\frac{12}{13}$$
 ④ $\frac{13}{5}$

②
$$\frac{13}{12}$$
 ⑤ $\frac{5}{12}$

 $3 \frac{5}{13}$


지름에 대한 원주각은 90° 이므로 $\angle ACB = 90^{\circ}$ BC = $\sqrt{13^2 - 5^2} = 12$ 이다.

따라서 $\sin A = \frac{12}{13}$ 이다.

①
$$\frac{1-\sqrt{3}}{6}$$
 ③ $\frac{2-2\sqrt{2}}{6}$

$$2\sqrt{2}$$

$$\begin{array}{ccc}
3 & & & & & \\
\sqrt{2} & & & & \\
\sqrt{2} & & & & \\
\sqrt{3} & & & & \\
\end{array}$$

$$\sin A = \frac{4}{8} = \frac{1}{2}, \ \tan A = \frac{4}{4\sqrt{3}} = \frac{\sqrt{3}}{3}$$

$$\therefore \sin A - \tan A = \frac{1}{2} - \frac{\sqrt{3}}{3} = \frac{3 - 2\sqrt{3}}{6}$$

 $\overline{AC} = \sqrt{8^2 - 4^2} = \sqrt{64 - 16} = \sqrt{48} = 4\sqrt{3}$

30.
$$\sin 45^{\circ} \times \frac{1}{\tan 60^{\circ}} - \tan^2 60^{\circ} \times \frac{\tan 45^{\circ}}{\cos 60^{\circ}}$$
 를 구하면?

①
$$\frac{\sqrt{6}}{\frac{6}{6}} - 4$$
 ② $\frac{\sqrt{6}}{\frac{6}{6}} - 5$ ③ $\frac{\sqrt{6}}{\frac{6}{6}} - 6$ ④ $\frac{\sqrt{6}}{\frac{6}{6}} - 8$

$$\sin 45^{\circ} \times \frac{1}{\tan 60^{\circ}} - \tan^{2} 60^{\circ} \times \frac{\tan 45^{\circ}}{\cos 60^{\circ}}$$

$$= \frac{\sqrt{2}}{2} \times \frac{1}{\sqrt{3}} - (\sqrt{3})^{2} \times \frac{1}{\frac{1}{2}}$$

$$= \frac{\sqrt{6}}{6} - 6$$

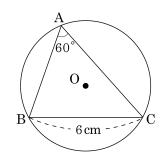
31. 다음 그림과 같이 $\overline{AB} = 6$, $\overline{AC} = 10$ 이고, ∠B = 90° 인 △ABC 에서 $\sin A$ 의 값은?

4)

$$\Im \frac{3}{10}$$

$$\overline{BC} = \sqrt{100 - 36} = \sqrt{64} = 8$$

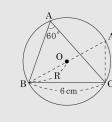
$$\therefore \sin A = \frac{8}{10} = \frac{4}{5}$$


32. 다음 그림에서 $\angle A = 60^{\circ}$, $\overline{BC} = 6 \mathrm{cm}$ 일 때, 외접원 O 의 반지름의 길이는?

① 3cm

- \bigcirc 4cm
- $3\sqrt{3}$ cm

 $\bigcirc 3\sqrt{3}$ cm


 $\bigcirc 2\sqrt{3}$ cm

그림과 같이 $\overline{A'B}$ 가 지름이 되도록 원주 위에 점 A' 을 잡고 반지름을 r 이라 하면 $\angle A = \angle A' = 60^\circ(:: 원주각)$

$$\sin A' = \frac{6}{2r} = \frac{3}{r}$$
$$\therefore r = \frac{3}{\sin 60^{\circ}} = 2\sqrt{3}$$

33. 다음 그림에서 ĀĦ = 10 , ∠B = 30° , ∠ACH = 60° 일 때, △ABC 의 넓이는?

①
$$\frac{100\sqrt{2}}{3}$$
 ② $\frac{200\sqrt{2}}{3}$ ③ $\frac{100\sqrt{3}}{3}$ ③ $\frac{100\sqrt{3}}{3}$

$$\angle BAH = 60^{\circ}, \angle CAH = 30^{\circ}$$

 $\triangle BAH$ 에서 $\overline{BH} = 10 \tan 60^{\circ} = 10 \sqrt{3}$
 $\triangle CAH$ 에서 $\overline{CH} = 10 \tan 30^{\circ} = \frac{10}{\sqrt{3}}$
 $\therefore \overline{BC} = \overline{BH} - \overline{CH}$
 $= 10 \sqrt{3} - \frac{10}{\sqrt{3}}$

 $=10\sqrt{3}\left(1-\frac{1}{3}\right)$

 $=\frac{20\sqrt{3}}{3}$

따라서 $\triangle ABC$ 의 넓이는 $\frac{20\sqrt{3}}{3} \times 10 \times \frac{1}{2} = \frac{100\sqrt{3}}{3}$ 이다.