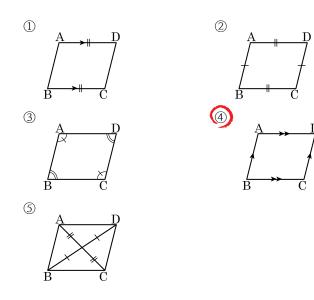
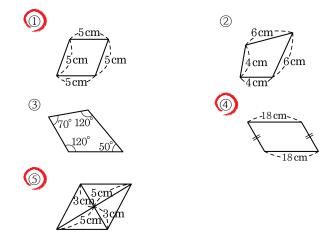
1. 다음 중 평행사변형의 정의를 그림으로 알맞게 나타낸 것은?



평행사변형의 정의는 두 쌍의 대변이 평행한 사각형이다.

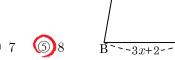
2. 다음 사각형 중에서 평행사변형을 모두 고르면?



⑤두 대각선이 서로 다른 것을 이등분한다.

①, ④두 쌍의 대변의 길이가 각각 같다.

3. 다음 평행사변형 ABCD 에서 $\overline{\mathrm{AD}} = 2x + 5$, $\overline{\mathrm{BC}}=3x+2,\,\overline{\mathrm{CD}}=x+5$ 일 때, $\overline{\mathrm{AB}}$ 의 길이 는? (1) 4 (2) 5 (3) 6 (4) 7 (5) 8



해설 $\overline{\mathrm{AD}} = \overline{\mathrm{BC}}$ 이므로

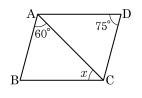
2x + 5 = 3x + 2, x = 3 $\overline{AB} = \overline{CD} = 3 + 5 = 8$

4. 다음 그림과 같은 평행사변형 ABCD 에서 $\angle x$ 의 크기는?

① 30°

② 35°

③ 40°



45°

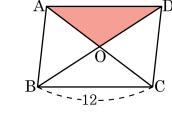
해설

⑤ 50°

 $\angle BCA = \angle CAD \ \circ \ \Box,$ $\angle BAD + \angle ADC = 180 \ \circ,$

 $60^{\circ} + \angle ACB + 75^{\circ} = 180^{\circ},$ $\angle ACB = 180^{\circ} - 60^{\circ} - 75^{\circ} = 45^{\circ}$ ∴ $\angle x = 45^{\circ}$

5. 다음 평행사변형 ABCD에서 $\overline{BC}=12$ 이고 두 대각선의 합이 36일 때, 어두운 부분의 둘레의 길이는?



① 15 ② 20 ③ 25

430

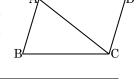
⑤ 35

해설

 $\Delta {
m AOD}$ 의 둘레는 $\overline{
m AO}$ + $\overline{
m OD}$ + $\overline{
m AD}$ 이므로

 $\overline{AO}+\overline{OD}$ 는 두 대각선의 합의 $\frac{1}{2}$ 이므로 18이고, $\overline{AD}=\overline{BC}$ 이므로 둘레는 12+18=30이다.

다음 그림과 같은 □ABCD 에서 AB = DC, AD = BC 이면 □ABCD 는 평행사변형임을 증명하는 과정이다. 빈 칸에 들어갈 것 중 옳지 않은 것은?



 CBA 의 공통부분이 된다.

 AB = (①) 이고, AD = (②) 이므로

 ΔADC ≡ ΔCBA (③ 합동)

 ∠BAC = ∠DCA, ∠DAC = ∠BCA(④)

 따라서 두 쌍의 대변이 각각 (⑤) 하므로 □ABCD 는 평행사변형이다.

대각선 AC 를 그어보면 대각선 AC 는 삼각형 ADC 와 삼각형

③ SSS

 $\overline{\text{AB}} = \overline{\text{DC}}, \overline{\text{AD}} = \overline{\text{BC}}$

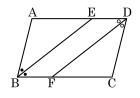
 $\odot \overline{CB}$

⑤ 평행

해설

 $\textcircled{4} \ \overline{\mathrm{AB}} \hspace{0.5mm} / \hspace{-0.5mm} / \overline{\mathrm{DC}}, \overline{\mathrm{AD}} \hspace{0.5mm} / \hspace{-0.5mm} / \overline{\mathrm{BC}}$

7. 평행사변형 ABCD 에서 $\angle B$, $\angle D$ 의 이등분 선이 변 AD , BC 와 만나는 점을 각각 E , F 라 할 때, 다음 중 옳지 <u>않은</u> 것은?



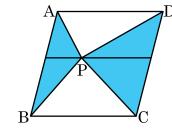
- ① $\angle B = \angle D$
- ② $\angle EBF = \angle FDE$
- \bigcirc \angle EDF = \angle DFC $\bigcirc \angle BAE = \angle DFB$
- $\textcircled{4} \angle BFD = \angle DEB$

$\triangle AEB$, $\triangle DFC$ 에서 $\angle A=\angle C$, $\angle ABE=\angle FDC$, $\overline{AB}=\overline{CD}$

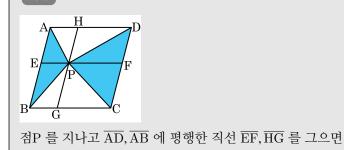
이므로 ASA 합동이다. 따라서 $\overline{\mathrm{ED}} = \overline{\mathrm{BF}}$, $\overline{\mathrm{BE}} = \overline{\mathrm{FD}}$ 이고 $\square\mathrm{EBFD}$ 는 평행사변형이다.

⑤ ∠BAE = ∠DFB 에서 ∠BAE = ∠FCD 이지만 ∠DFB ≠ ∠FCD 이므로 옳지 않다.

다음 그림과 같은 평행사변형 ABCD 내부의 한 점 P 에 대하여
 □ABCD 의 넓이가 84cm² 일 때, △ABP + △CDP 의 값은?

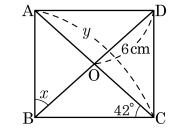


- ① 36cm^2 ④ 50cm^2
- $2 38 \text{cm}^2$
- 342cm^2
- \bigcirc 54cm²



 $\square AEPH$, $\square EBGP$, $\square PGCF$, $\square HPFD$ 는 모두 평행사변형이다. $\triangle ABP + \triangle PCD = \triangle APD + \triangle PBC$ 이므로 색칠한 부분의 넓이는 $\square ABCD$ 의 $\frac{1}{2}$ 이다. $\triangle ABP + \triangle CDP = 84 \times \frac{1}{2} = 42 (cm^2)$

다음 그림과 같이 직사각형 ABCD 에서 x, y의 값이 옳게 짝지어진 9. 것은?



③ $x = 48^{\circ}, y = 6$ cm

① $x = 42^{\circ}, y = 12$ cm

- $x = 48^{\circ}, y = 12cm$ $4 x = 58^{\circ}, y = 12 \text{cm}$
- ⑤ $x = 58^{\circ}, y = 6 \text{cm}$

직사각형의 한 내각의 크기는 90°, \angle OBC = 42° $\therefore x = 90 - 42 =$

해설

48° 직사각형은 대각선의 길이가 같고 서로 다른 것을 이등분하므로

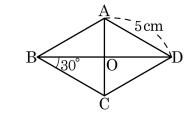
 $y = 2 \times 6 = 12(cm)$

- 10. 다음은 평행사변형이 직사각형이 되는 것에 대한 이야기이다. 바르게 말한 학생은?
 - ① 관식: 평행사변형에서 각 대각선이 서로 다른 대각선을 이등분하면 직사각형이야. ② 관희: 평행사변형에서 두 대각선이 직교하면 직사각형이야.
 - ③ 민희: 평행사변형의 두 내각의 크기의 합은 180°일 때
 - 직사각형이야. ④ 진수: 평행사변형에서 두 대각선의 길이가 같거나, 한 내각의
 - 크기가 90° 이면 직사각형이야. ⑤ 정민: 평행사변형의 이웃하는 두 변의 길이가 같으면
 - 직사각형이야.

평행사변형이 직사각형이 되기 위한 조건은

두 대각선의 길이가 서로 같다. 한 내각이 직각이다. 따라서 진수가 바르게 말했다.

11. 다음 그림의 마름모 ABCD 에 대하여 다음 중 옳지 <u>않은</u> 것은?

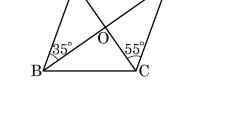


- ① $\angle ADC = 60^{\circ}$
- ② $\angle AOD = 90^{\circ}$ $\overline{\text{BO}} = 5\text{cm}$
- $\overline{\text{AO}} = \frac{5}{2} \text{cm}$

① 대각선이 한 내각을 이등분하므로 $\angle ABO = 30^{\circ}$, $\angle ABC =$

- $\angle ADC = 60^{\circ}$ ② 대각선이 서로 다른 것을 수직이등분
- ③ $\triangle ABC$ 는 정삼각형
- ⑤ 대각선에 의해 나눠지는 네 개의 삼각형은 모두 합동

12. 다음 그림과 같은 평행사변형 ABCD 에서 \angle ADO 의 크기는?



해설

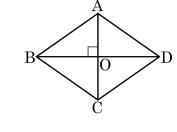
① 25° ② 32°

③35° ④ 40° ⑤ 45°

 $\angle ABD = \angle BDC = 35\,^{\circ}$, $\angle DOC = 90\,^{\circ}$ 이므로 $\Box ABCD$ 는 마름

모이다. 따라서 ∠ADO = 35°

13. 다음 그림과 같은 마름모 ABCD 가 정사각형이 되기 위한 조건을 모두 고르면?

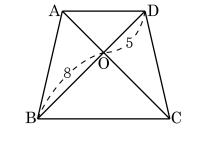


- ① $\angle ABO = \angle CBO$ $\overline{\text{3}}\overline{\text{AC}} = \overline{\text{BD}}$
- \bigcirc \angle OAD = \angle ODA

② $\overline{\mathrm{BO}} = \overline{\mathrm{DO}}$

정사각형은 네 변의 길이가 같고 네 각이 90°로 모두 같아야 한다.

14. 다음 그림에서 $\square ABCD$ 는 등변사다리꼴이다. $\overline{OD}=5, \ \overline{OB}=8$ 일 때, \overline{AC} 의 길이는?



① 10 ② 11 ③ 12

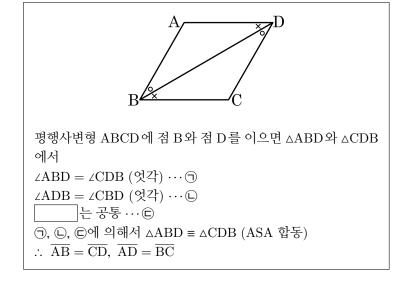
413

⑤ 14

등변사다리꼴은 두 대각선의 길이가 서로 같으므로 $\overline{\mathrm{BO}}+\overline{\mathrm{DO}}=$

 $\overline{\mathrm{BD}} = \overline{\mathrm{AC}}$ 이다. $\overline{\mathrm{AC}} = 13$

15. 다음은 '평행사변형에서 두 쌍의 대변의 길이는 각각 같다.' 를 증명한 것이다. □ 안에 들어갈 말로 알맞은 것은?



 $\bigcirc \overline{3} \overline{BD}$ $\bigcirc \overline{DC}$ $\bigcirc \overline{DA}$

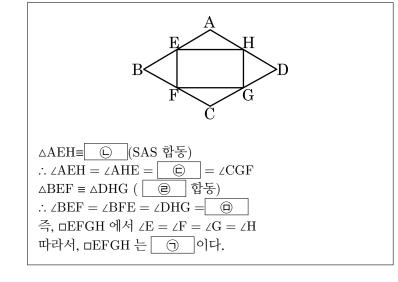
 $\angle ABD = \angle CDB$ (엇각), $\angle ADB = \angle CBD$ (엇각), \overline{BD} 는 공통이 므로

△ABD와 △CDB에서

해설

△ABD ≡ △CDB (ASA 합동)이다.

16. 다음은 마름모 ABCD 의 각 변의 중점을 E, F, G, H 라 할 때, \square EFGH 는 🗍 임을 밝히는 과정이다. 🗇~@을 바르게 채우지 못한 것은?



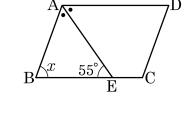
④ ⊜: SAS ⑤ ⊚: ∠DGH

① つ: 정사각형 ② ○: △CFG ③ ○: ∠CFG

마름모의 각 변의 중점을 연결하면 직사각형이 된다.

 \triangle AEH 와 \triangle CFG 가 SAS 합동이고, ΔBEF 와 ΔDHG 는 SAS 합동이므로 $\angle E=\angle F=\angle G=\angle H$ 따라서 □EFGH 는 직사각형이다.

17. 다음 그림과 같은 $\square ABCD$ 에서 $\angle A$ 의 이등분선이 변 BC와 만나는 점을 E라 한다. 이때, □ABCD가 평행사변형이 되도록 하는 ∠x의 크기는?



④ 90° ⑤ 100°

3 80°

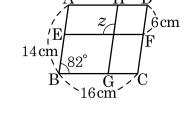
① 60°

해설

삼각형의 내각의 합은 180°이므로 x = 70°이다.

평행선의 엇각의 성질에 의해 $\bullet = 55\,^\circ$,

18. 다음 그림의 평행사변형 ABCD 에서 $\overline{\rm AD}$ $\#\overline{\rm EF}$, $\overline{\rm AB}$ $\#\overline{\rm HG}$ 일 때, z 의 값은?



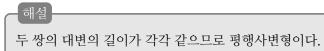
④ 92°

① 82° ② 86° ③ 90°

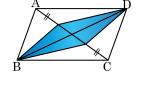
 $\angle z = 180^{\circ} - 82^{\circ} = 98^{\circ}$

- 19. 다음 그림과 같이 평행사변형 ABCD 의 각 변의 중점을 P, Q, R, S 라고 할 때, □PQRS 는 어떤 도형이 되는가?
 - 는 어떤 도영이 되는가? ① 정사각형 ② 마름모
 - ③ 직사각형
 ④ 평행사변형

 ⑤ 사다리꼴



20. 다음 그림과 같이 평행사변형 ABCD 의 대 각선 AC 위에 꼭짓점 A, C 로부터 거리가 같도록 두 점을 잡았다. 색칠한 사각형은 어떤 사각형인가?



④ 마름모

① 사다리꼴

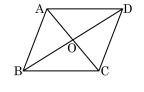
② 평행사변형⑤ 정사각형

③ 직사각형

- 해설 드 저으

두 점을 각각 E, F 라고 하고 평행사변형 ABCD 의 두 대각선의 교점을 O 라고 하면 $\overline{BO} = \overline{DO}$, $\overline{AO} = \overline{OC}$ 이다. 그런데 $\overline{AE} = \overline{CF}$ 이므로 $\overline{EO} = \overline{FO}$ 이다. 따라서 두 대각선이 서로 다른 것을 이등분하므로 색칠한 부분의 사각형은 평행사변형이다.

21. 다음 그림과 같은 평행사변형 ABCD에서 점 O가 두 대각선의 교점일 때, ΔABC의 넓이가 24였다. ΔCOD의 넓이는?



① 6 ④ 48

③ 24

·

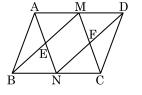
⑤ 알수 없다.

△ABO, △OBC,△OCD, △OAD의 넓이가 같으므로

해설

 $\triangle OCD = \frac{1}{2} \times \triangle ABC = 12$ 이다.

22. 평행사변형 ABCD 에서 \overline{AD} 와 \overline{BC} 의 중점을 각각 M, N 이라 하고, 다음과 같이 각 평행사변형의 꼭짓점에서 선을 그었다. 다음 중 옳지 <u>않은</u> 것은?



 \bigcirc $\triangle AEM \equiv \triangle ABE$

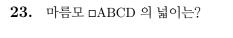
0 111 1110

2 ¬, © 3 @, @

3 (, (

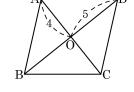
→ ③ △AEM 과 △ABE 의 넓이는 같지만 합동이 아니다.

© △ABM 과 △ABN 의 넓이는 같지만 합동이 아니다.



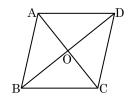
440 **5**50

① 10 ② 20 ③ 30



 $\frac{1}{2} \times 10 \times 8 = 40$

24. 다음 그림과 같은 평행사변형 ABCD 가 AO⊥BD 를 만족하고, AB = 5cm 일 때, BC + AD 의 길이는?



① 8cm

② 9cm

③10cm

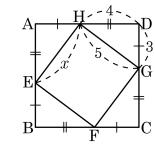
④ 11cm

⑤ 12cm

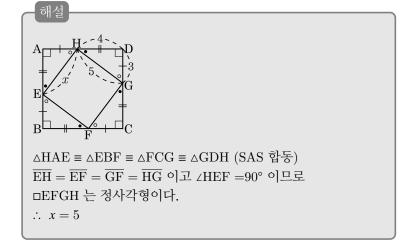
평행사변형 ABCD 가 AO⊥BD 를 만족하면 □ABCD 는 마름

모이다. 따라서 $\overline{AB} = \overline{BC} = \overline{CD} = \overline{AD} = 5 \mathrm{cm}$ 이다. 따라서 $\overline{BC} + \overline{AD} = 5 + 5 = 10 \mathrm{(cm)}$ 이다.

25. □ABCD 가 정사각형일 때, x 의 길이를 구하여라.



① 1 ② 2 ③ 3 ④ 4 ⑤ 5



26. 다음 보기 중 그림과 같은 마름모 ABCD 가 정 사각형이 되도록 하는 조건의 개수는?

 \bigcirc $\overline{AO} = \overline{DO}$

 \bigcirc $\overline{AB} = \overline{AD}$

 \bigcirc $\angle ADC = 90^{\circ}$

해설

 \bigcirc $\angle ABC = \angle BCD$

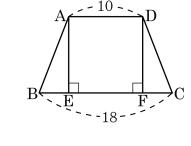
① 0개 ② 1개 ③ 2개

④3개⑤4개

대각선의 길이가 같으면 된다. 따라서 $\overline{\mathrm{AO}} = \overline{\mathrm{DO}}$, $\angle \mathrm{ADC} = 90^\circ$, $\angle ABC + \angle BCD = 180$ ° 이므로 $\angle ABC = \angle BCD$ 이면 된다.

마름모가 정사각형이 되려면 한 내각의 크기가 90° 이거나 두

27. 다음 그림의 □ABCD는 AD // BC 인 등변사다리꼴이다. 점 A, D 에서 BC 에 수선을 내려 만나는 점을 각각 E, F라고 한다. AD = 10, BC = 18일 때, CF의 길이는?



① 1 ② 2

(3)

4 6

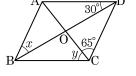
⑤ 8

 $\triangle ABE \equiv \triangle DCF$ 는 RHA 합동이다.

해설

따라서 $\overline{\mathrm{BE}} = \overline{\mathrm{CF}}$ 이므로 $\overline{\mathrm{EC}} = (18-10) \div 2 = 4$ 이다.

28. 다음 그림과 같은 평행사변형 ABCD 에서 $\angle {\rm ADO} = 30^{\circ}, \angle {\rm DCO} = 65^{\circ}$ 일 때, $\angle x + \angle y$ 의 크기를 구하면? ② 70° ③ 75°



① 65°

4 80°

⑤ 85°

 $\angle ADB = \angle DBC = 30^{\circ}$ $\angle x + 30^\circ + 65^\circ + \angle y = 180^\circ$

해설

 $\angle x + \angle y = 180^{\circ} - (30^{\circ} + 65^{\circ}) = 85^{\circ}$

29. 다음 그림과 같은 $\square ABCD$ 가 평행사변형이 되도록 하는 x, y의 값은?

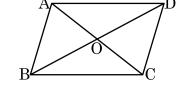
$$3x-4y$$

$$B \xrightarrow{-17---C} C$$

- ① x = 4, y = 1 ② x = 3, y = 1 ③ x = 4, y = 1

 $15 + 2y = 17, \ 2y = 2$ $\therefore y = 1$ 3x - 4 = 2x + 1 $\therefore x = 5$

30. 다음 조건을 만족하는 $\square ABCD$ 중에서 평행사변형인 것을 모두 고르면? (정답 2 개)

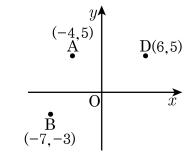


- ① $\angle A = 50^{\circ}, \ \angle B = 130^{\circ}, \ \angle C = 50^{\circ}$ ② $\overline{AB}//\overline{BC}, \ \overline{AB}//\overline{DC}$
- — —

① $\angle A = \angle C = 50^{\circ}, \angle B = \angle D = 130^{\circ}$ 두 쌍의 대각의 크기가

같으므로 평행사변형이다. ④ 두 쌍의 대변의 길이가 각각 같으므로 평행사변형이다.

31. 다음 그림과 같은 좌표평면 위의 세 점 A(-4,5), B(-7,-3), D(6,5) 가 있다. 제 4사분면 위의 점 C 에 대하여 □ABCD 가 평행사변형이 되기 위한 점 C 의 좌표는?



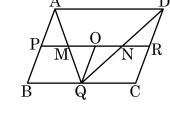
- (3, -3)
- ① (2,-1) ② (2,-3) \bigcirc (4, -3)
- (3,-2)

 $\overline{\mathrm{AD}}\,/\!/\,\overline{\mathrm{BC}}$ 이므로 점 C 의 y 좌표는 -3 이다. A(-4,5), D(6,5) 이므로 $\overline{AD} = 10$

해설

점 C 의 x 좌표는 x - (-7) = 10, x = 3 $\therefore C(3, -3)$

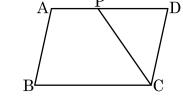
32. 다음 그림의 평행사변형 ABCD 에서 점 P,Q,R 는 각각 변 AB,BC,CD 의 중점이고, 변 PR 의 중점이 점 O 일 때, 다음 중 옳은 것은?



- _
- ① ¬, □ ② ¬, e ③ □, e ④ □, n ⑤e, n
 - 해설

 $\triangle APM \equiv \triangle MOQ$ 이므로 ② $\overline{BP} = \overline{AP} = \overline{OO}$

(a) $\overline{BP} = \overline{AP} = \overline{OQ}$ $\overline{PM} = \overline{MO}$, $\overline{ON} = \overline{NR}$ 이고 점 O 가 \overline{PR} 의 중점이므로 (a) $\overline{MO} = \overline{ON}$ 이다. 33. 다음 평행사변형 ABCD 에서 △PCD = $30 \mathrm{cm}^2$ 이고, $\overline{\mathrm{AP}}: \overline{\mathrm{PD}} = 2:3$ 이다. □ABCP 의 넓이는?



- $90\mathrm{cm}^2$
- 270cm^2
- $3 80 \text{cm}^2$

$$\triangle PCD = \frac{1}{2} \Box ABCD \times \frac{3}{5} = \frac{3}{10} \Box ABCD$$

$$\Box ABCP = \Box ABCD - \triangle PCD = \frac{7}{10} \Box ABCD$$

$$\therefore \Box ABCP = \frac{7}{3} \triangle PCD = 70 \text{cm}^2$$

$$\therefore \Box ABCP = \frac{7}{2} \triangle PCD = 70 \text{cm}^2$$