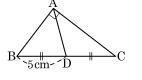

1. 다음 그림과 같이 $\angle C=90$ ° 인 직각삼각형 ABC 에서 $\overline{AE}=\overline{AC},\ \overline{AB}\bot\overline{DE}$ 일 때, \overline{DC} 의 길이를 구하여라.

▷ 정답: 5 cm

 $\underline{\mathrm{cm}}$


▶ 답:

해설

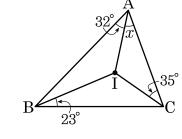
ΔAED와 ΔACD에서 ĀĒ = ĀC, ∠AED = ∠ACD, ĀD는 공통

∴ △AED ≡ △ACD (RHS 합동)
 ∴ DC = ED = 5 (cm)

 $\mathbf{2}$. 다음 그림의 직각삼각형 ABC 에서 점 D 는 빗변의 중심이다. $\overline{\mathrm{BD}} = \overline{\mathrm{DC}} = 5\,\mathrm{cm}$ 일 때, $\overline{\mathrm{AD}}$ 의 길이를 구하여라.

▷ 정답: 5<u>cm</u>

답:

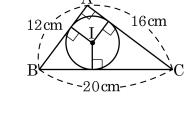

삼각형의 외심으로부터 각 꼭짓점까지의 거리는 같다.

해설

 $\overline{\mathrm{BD}} = \overline{\mathrm{DC}} = \overline{\mathrm{AD}} = 5\,\mathrm{cm}$

 $\underline{\mathrm{cm}}$

다음 그림에서 점 I가 △ABC의 내심일 때 ∠x = ()°이다.
 () 안에 들어갈 알맞은 수를 구하여라.



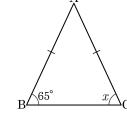
답:▷ 정답: 32

삼각형의 세 내각의 이등분선의 교점이 삼각형의 내심이다. 따

라서 ∠BAI = ∠CAI = 32°이다.

4. 다음 그림과 같은 $\triangle ABC$ 의 넓이가 $96cm^2$ 일 때, 내접원의 반지름의 길이를 구하여라.

 $\underline{\mathrm{cm}}$

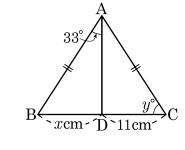

▷ 정답: 4 <u>cm</u>

▶ 답:

내접원의 중심을 I라고 하면, \triangle ABI, \triangle IBC, \triangle ICA 의 높이는

내접원의 반지름과 같다. 내접원의 반지름을 x 라 하면 $\frac{1}{2}(12 +$ 16 + 20)x = 96cm² $\therefore x = 4 \text{cm}$

- 5. 다음 그림과 같은 $\triangle ABC$ 에서 $\overline{AB} = \overline{AC}$ 일 때, ∠x 의 크기는?


① 45° ② 55°

③65° ④ 75° ⑤ 85°

 $\triangle ABC$ 가 $\overline{AB} = \overline{AC}$ 인 이등변삼각형이므로

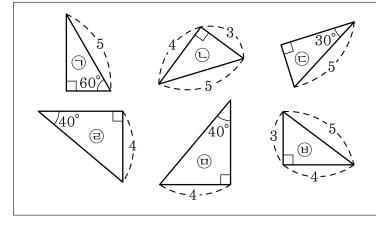
 $\angle x = \angle {\rm ABC} = 65^{\circ}$

6. 다음 그림과 같이 $\overline{AB}=\overline{AC}$ 인 이등변삼각형 ABC에서 $\angle A$ 의 이등 분선과 $\overline{\mathrm{BC}}$ 의 교점을 D라 하자. $\overline{\mathrm{DC}}=11\mathrm{cm},\ \angle\mathrm{BAD}=33\,^{\circ}$ 일 때, x + y의 값은?

① 48 ② 58

368

4 78


⑤ 88

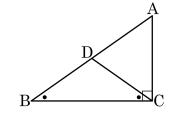
이등변삼각형에서 꼭지각의 이등분선은 밑변을 수직이등분하

므로 $\overline{\mathrm{BD}} = \overline{\mathrm{DC}} = 11\mathrm{cm}$ ΔABC는 이등변삼각형이므로

 $y = \frac{1}{2}(180 \, ^{\circ} - 66 \, ^{\circ}) = 57 \, ^{\circ}$ $\therefore \ x + y = 11 + 57 = 68$

7. 다음 직각삼각형 중에서 서로 합동인 것끼리 짝지은 것이 <u>아닌</u> 것을 모두 고르면?

① ① 과 L) ④ L과 B


② ()과 (C) ③ (e)과 (D) ③Q과 @

⑤과 ⑥ : 빗변의 길이가 5 로 같고, 대각의 크기가 30° , 60° 로

같으므로 RHA 합동이다. ⑥과 ⑥: 빗변의 길이가 5 로 같고, 나머지 한 대변의 길이가 3 으로 같으므로 RHS 합동이다.

(a)과 (a): 대응각의 크기가 40°, 90°로 같고 한 대변의 길이가 4로 같으므로 ASA 합동이다.

8. 다음은 직각삼각형 ABC 에서 \overline{AB} 위의 $\angle B = \angle BCD$ 가 되도록 점 D 를 잡으면 $\overline{AD} = \overline{BD} = \overline{CD}$ 임을 증명하는 과정이다. (가)~(마) 에 들어갈 내용으로 알맞은 것은?

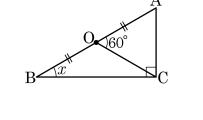
∠B = (가) 이므로 △BCD 는 이등변삼각형이다.
따라서 BD = (나) 이다.
삼각형 ABC 에서 ∠A + ∠B + 90° = 180° 이므로 ∠A = 90° - ∠B 이다.
∠ACD + (다) = ∠ACB 에서 ∠ACB 가 90° 이므로
∠ACD = 90° - (라) 이다.
그런데 ∠B = (마) 이므로 ∠A = ∠ACD 이다.
따라서 △ACD 는 이등변삼각형이므로 ĀD = CD 이다.
∴ BD = CD = ĀD 이다.

④(라): ∠BCD ⑤ (마): ∠ABC

① $(가) : \angle ADC$ ② $(나) : \overline{BC}$ ③ $(다) : \angle BDC$

 $\angle B = \angle BCD$ 이므로 $\triangle BCD$ 는 이등변삼각형이다. 따라서

BD = CD 이다. 삼각형 ABC 에서 ∠A + ∠B + 90° = 180° 이므로 ∠A = 90° - ∠B 이다.


해설

∠ACD + ∠BCD = ∠ACB 에서 ∠ACB 가 90° 이므로 ∠ACD = 90° - ∠BCD 이다. 그런데 ∠B = ∠BCD 이므로 ∠A = ∠ACD 이다.

 $\therefore \overline{BD} = \overline{CD} = \overline{AD}$ 이다.

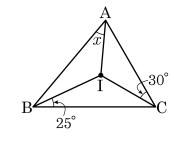
따라서 $\triangle ACD$ 는 이등변삼각형이므로 $\overline{AD} = \overline{CD}$ 이다.

9. 다음 그림과 같이 $\angle C = 90^\circ$ 인 직각삼각형 ABC 의 빗변 AB 의 중점 을 O 라 하자. $\angle AOC = 60^{\circ}$ 일 때, $\angle x$ 의 크기는?

① 10° ② 20°

③30°

40°

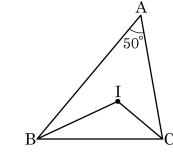

⑤ 50°

해설

직각삼각형의 외심은 빗변의 중점이므로 $\overline{\mathrm{AO}} = \overline{\mathrm{CO}} = \overline{\mathrm{BO}}$ $\overline{\mathrm{BO}} = \overline{\mathrm{CO}}$ 이므로 $\Delta \mathrm{BOC}$ 는 이등변삼각형이다. 따라서 $\angle OCB = \angle B = x$ 삼각형의 한 외각의 크기는 두 내각의 합과 같으므로

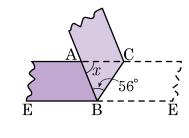
 $x + x = 60^{\circ}$ $\therefore x = 30^{\circ}$

10. 다음 그림에서 ΔABC 에서 세 각의 이등분선의 교점을 I라고 할 때, $\angle IBC = 25$ °, $\angle ICA = 30$ °이다. $\angle IAB$ 의 크기는?


① 20° ② 25° ③ 30°

⑤ 40°

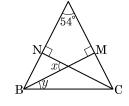
점 I가 △ABC의 내심이므로


 $\angle x + 30^{\circ} + 25^{\circ} = 90^{\circ}$ \therefore $\angle x = 35^{\circ}$

11. 다음 그림에서 $\triangle ABC$ 의 내심을 I라 할 때, $\angle A=50\,^{\circ}$ 이면 $\angle BIC$ 의 크기는?

- ① 100° ② 105° ③ 110° ④ 115° ⑤ 120°
 - 점 I가 \triangle ABC의 내심일 때, \angle BIC = $90^{\circ} + \frac{1}{2} \angle$ A이다. $\therefore \angle$ BIC = $90^{\circ} + \frac{1}{2} \times 50^{\circ} = 115^{\circ}$

12. 다음 그림과 같이 직사각형 모양의 종이를 접었을 때, $\angle x$ 의 크기는?


① 60° ② 62° ③ 64° ④ 66°

⑤68°

 $\angle ABE = 180$ ° - (56° $\times 2) = 68$ °

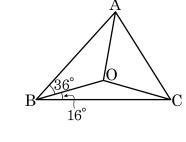
 $\angle ABE = \angle BAC = \angle x = 68$ ° (엇각)

13. 다음 그림에서 $\triangle ABC$ 는 $\overline{AB} = \overline{AC}$, $\angle A =$ $54\,^{\circ}$ 인 이등변삼각형이다. 점 B, C 에서 대 변에 내린 수선의 발을 각각 M,N 이라 할 때, $\angle x + \angle y$ 의 크기는 ?

①81°

② 82° ③ 86° ④ 88°

⑤ 90°


\triangle BNC \equiv \triangle CMB (RHA 합동)

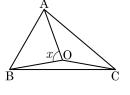
 $\triangle \mathrm{BMC}$ 에서 $\angle \mathrm{MCB} = 63\,^{\circ}, y = 27\,^{\circ}$ \angle MCN = 63 ° - 27 ° = 36 °

 $\therefore x = 180 \degree - (36 \degree + 90 \degree) = 54 \degree$

 $\therefore \angle x + \angle y = 54^{\circ} + 27^{\circ} = 81^{\circ}$

14. \triangle ABC 에서 점 O 는 외심이다. \angle OAC 의 크기를 구하여라.

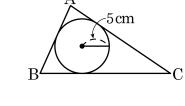
▷ 정답: 38°


▶ 답:

해설

 $\angle OAC = 90^{\circ} - (36^{\circ} + 16^{\circ}) = 38^{\circ}$

 $\angle OAC + \angle OBA + \angle OCB = 90^{\circ}$

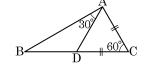

15. 다음 그림에서 점 O는 $\triangle ABC$ 의 외심이고, $\angle A: \angle B: \angle C=4:3:2$ 일 때, $\angle x$ 의 크기를 구하여라.

▶ 답: ▷ 정답: 80°

 $\angle C = 180^{\circ} \times \frac{2}{4+3+2} = 40^{\circ}$ 점 O가 ΔABC의 외심이므로 $\angle x = 2 \angle ACB = 2 \times 40^{\circ} = 80^{\circ}$

16. 다음 그림에서 $\triangle ABC$ 의 내접원의 반지름의 길이는 $5\,\mathrm{cm}$ 이다. $\triangle ABC = 120\,\mathrm{cm}^2$ 일 때, $\triangle ABC$ 의 세 변의 길이의 합을 구하여라.

 $\underline{\mathrm{cm}}$


▷ 정답: 48cm

▶ 답:

세 변의 길이를 각각 a, b, c 라 두면 $\triangle ABC = \frac{1}{2} \times 5 \times (a+b+c)$ ∴ $a+b+c = 120 \times \frac{2}{5} = 48 \text{ (cm)}$

$$\therefore a + b + c = 120 \times \frac{2}{5} = 48$$

17. 그림과 같은 $\triangle ABC$ 에서 $\overline{AC} = \overline{CD}$ 일 때, <u>틀린</u> 것을 모두 고르면?

- \bigcirc $\angle ADC = 50^{\circ}$ © ∠A = 90°
- \bigcirc $\angle ABD = 40^{\circ}$
- ② △ABD 는 이등변삼각형 \bigcirc \overline{AC} 가 5cm 일 때, \overline{BD} 는 5cm 이다.
- ④ ⋽, ໍ

 \bigcirc , \bigcirc

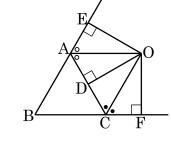
- ② (L), (E) ⑤ ⑤, ◎

③ ¬, ₪

해설

 $\triangle \mathrm{ADC}$ 에서 $\overline{\mathrm{AC}} = \overline{\mathrm{CD}}$ 이므로

 $\angle CAD = \angle CDA = \frac{1}{2} \times (180 \degree - 60 \degree) = 60 \degree$

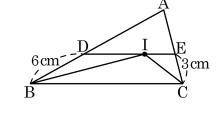

따라서 △ADC 는 정삼각형이다.

 $\angle \mathrm{BAC} = 30\,^{\circ} + 60\,^{\circ} = 90\,^{\circ}$ 따라서 $\triangle ABC$ 에서 $\angle ABC = \angle ABD = 30$ ° 이다.

 $\angle {\rm BAD} = \angle {\rm ABD} = 30\,^{\circ}$ 이므로 $\triangle {\rm ABD}$ 는 이등변삼각형 $\triangle ADC$ 는 정삼각형이고 $\triangle ABD$ 는 이등변삼각형이므로 \overline{AC} =

 $\overline{\mathrm{CD}} = \overline{\mathrm{AD}} = \overline{\mathrm{BD}}$ 따라서 \overline{AC} 가 $5\mathrm{cm}$ 일 때, \overline{BD} 는 $5\mathrm{cm}$ 이다.

18. 다음 그림에서 $\triangle ABC$ 의 $\angle A$, $\angle C$ 의 외각의 이등분선의 교점을 O 라하고, 점 O 에서 각 변의 연장선 위에 내린 수선의 발을 D, E, F 라할 때, 다음 중 옳지 않은 것은?

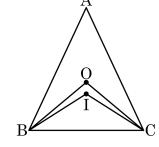

① $\overline{\mathrm{OD}} = \overline{\mathrm{OE}} = \overline{\mathrm{OF}}$

- \bigcirc $\overline{AD} = \overline{AE}$

 $\frac{\Box \Xi}{\mathrm{OD}} = \overline{\mathrm{OE}} = \overline{\mathrm{OF}}$, $\overline{\mathrm{CD}} = \overline{\mathrm{CF}}$, $\overline{\mathrm{AD}} = \overline{\mathrm{AE}}$

그림에서 $\triangle \rm{AEO} \equiv \triangle \rm{ADO}$, $\triangle \rm{CFO} \equiv \triangle \rm{CDO}$ (RHA 합동)이

19. 다음 그림과 같이 $\triangle ABC$ 의 내심 I 를 지나고 \overline{BC} 에 평행한 직선과 $\overline{AB}, \overline{AC}$ 와의 교점을 각각 D, E 라고 한다. $\overline{BD} = 6 \, \mathrm{cm}, \ \overline{CE} = 3 \, \mathrm{cm}$ 일 때, \overline{DE} 의 길이를 구하여라.


▷ 정답: 9 cm

답:

 $\overline{\mathrm{BD}} = \overline{\mathrm{DI}}, \ \overline{\mathrm{CE}} = \overline{\mathrm{IE}}$

 $\therefore \overline{DE} = \overline{DI} + \overline{IE} = 6 + 3 = 9(\text{ cm})$

20. 다음 그림에서 점 O 와 I 는 각각 \triangle ABC 의 외심과 내심이다. \angle BOC = 100° 이고, \angle A = a° , \angle BIC = b° 라고 할 때, b-a 의 값을 구하여라.

▷ 정답: 65

▶ 답:

$$\angle A = \frac{1}{2} \angle BOC = \frac{1}{2} \times 100^{\circ} = 50^{\circ} \Rightarrow a = 50$$
 $\angle BIC = 90^{\circ} + \frac{1}{2} \angle A = 90^{\circ} + 25^{\circ} = 115^{\circ} \Rightarrow b = 115$
따라서 $b - a = 115 - 50 = 65$ 이다.