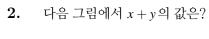
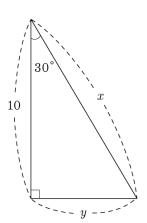

1. 다음 그림에서 x 의 값은?


- ① $7 + 8\sqrt{2}$ ② $7 + 8\sqrt{3}$ ③ $8 + 8\sqrt{2}$ ④ $8 + 8\sqrt{3}$ ⑤ $9 + 8\sqrt{2}$

$$\overline{DC} = \overline{AD} = 16 \sin 60^{\circ} = 16$$


$$\overline{\overline{BD}} = 16\cos 60^{\circ} = 16 \times \frac{1}{2} = 8$$

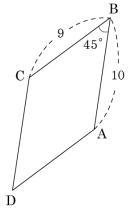
$$\overline{\overline{DC}} = \overline{\overline{AD}} = 16\sin 60^{\circ} = 16 \times \frac{\sqrt{3}}{2} = 8\sqrt{3}$$

$$\therefore x = \overline{\overline{BD}} + \overline{\overline{CD}} = 8 + 8\sqrt{3}$$

- ① $8\sqrt{3}$ ② $9\sqrt{3}$
- $\boxed{3}10\sqrt{3}$
- (4) $11\sqrt{3}$ (5) $12\sqrt{3}$

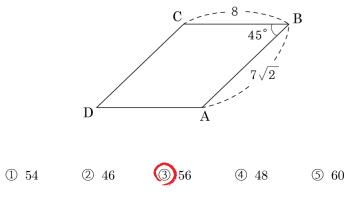
$$x = \frac{10}{\cos 30^{\circ}} = \frac{20}{\cos 30^{\circ}}$$

$$\cos 30^{\circ} \qquad 3$$


$$v = 10 \times \tan 30^{\circ} =$$

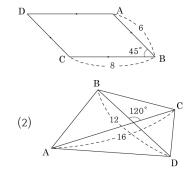
$$x = \frac{10}{\cos 30^{\circ}} = \frac{20\sqrt{3}}{3}$$
$$y = 10 \times \tan 30^{\circ} = 10 \times \frac{1}{\sqrt{3}} = \frac{10\sqrt{3}}{3}$$
$$\therefore x + y = 10\sqrt{3}$$

3. 다음과 같은 평행사변형의 넓이를 구하


③ $43\sqrt{2}$

- ① $41\sqrt{2}$ ② $42\sqrt{2}$
- ④ $44\sqrt{2}$ $\bigcirc 345\sqrt{2}$

 $9 \times 10 \times \sin 45^{\circ} = 9 \times 10 \times \frac{\sqrt{2}}{2}$ $= 45\sqrt{2}$


4. 다음과 같은 평행사변형의 넓이는?

해설

(넓이) =
$$7\sqrt{2} \times 8 \times \sin 45^{\circ}$$

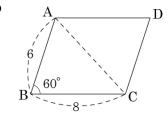
= $7\sqrt{2} \times 8 \times \frac{\sqrt{2}}{2} = 56$

다음과 같은 두 사각형의 넓이는 각각 얼마인가? **5.**

- ① $(1)22\sqrt{2},(2)43\sqrt{3}$ $3 (1)22\sqrt{2}, (2)48\sqrt{3}$
- ② $(1)22\sqrt{2}, (2)45\sqrt{3}$ (4) $(1)24\sqrt{2}, (2)45\sqrt{3}$
- \bigcirc (1)24 $\sqrt{2}$, (2)48 $\sqrt{3}$

(1) (넓이) = $6 \times 8 \times \sin 45$ °

$$= 6 \times 8 \times \frac{\sqrt{2}}{2} = 24\sqrt{2}$$
(2) (달아) = $\frac{1}{2} \times 12 \times 16 \times \sin(180^{\circ} - 120^{\circ})$

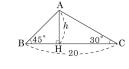

$$= \frac{1}{2} \times 12 \times 16 \times \frac{\sqrt{3}}{2} = 48\sqrt{3}$$

- 다음 그림과 같이 바다를 항해하는 배와 6. 등대 사이의 거리가 21 m 이고, 배에서 등대의 꼭대기를 바라 본 각의 크기가 15°이었다면, 등대의 높이는?

 - ① $\tan 15\,^{\circ}\,\mathrm{m}$ $4 21 \sin 15$ ° m
- ② 21 tan 15 ° m ③ sin 15 ° m $\Im \cos 15^{\circ} \mathrm{m}$

 $\tan 15$ ° = $\frac{x}{21}$ 이므로 $x = 21 \tan 15$ ° m 이다.

- 7. 다음 그림과 같은 평행사변형 ABCD 에서 대각선AC 의 길이는?
 - ① $3\sqrt{5}$
 - ② $2\sqrt{7}$
 - $\bigcirc 3 2\sqrt{13}$
- ④ $3\sqrt{13}$



해설 점 A 에서 \overline{BC} 에 내린 수선의 발을 E 라고 하면

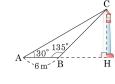
 $\overline{AE}=6\times\sin60^\circ=3\,\sqrt{3}$, $\overline{BE}=6\times\cos60^\circ=3,$ $\overline{CE}=8-3=5$

이다. 따라서 ΔAEC 에 피타고라스 정리를 적용하면 \overline{AC} = $\sqrt{\left(3\sqrt{3}\right)^2 + 5^2} = \sqrt{52} = 2\sqrt{13}$ 이다.

8. 다음 그림과 같은 \triangle ABC 에서 높이 h 를 구하면?

①
$$10(\sqrt{2}-1)$$
 ② $10(\sqrt{3}-1)$ ③ $10(\sqrt{3}-\sqrt{2})$ ④ $10(\sqrt{2}-2)$

해설
$$h = \frac{20}{\tan (90^{\circ} - 45^{\circ}) + \tan (90^{\circ} - 30^{\circ})}$$


$$= \frac{20}{\tan 45^{\circ} + \tan 60^{\circ}}$$

$$= \frac{20}{1 + \sqrt{3}}$$

$$= \frac{20(\sqrt{3} - 1)}{3 - 1}$$

$$= 10(\sqrt{3} - 1)$$

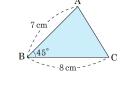
다음 그림은 등대의 높이를 알아보기 위해 측정한 결과이다. 등대의 9. 높이는?

- ① $(3 \sqrt{3})$ m $(4\sqrt{3}+1)$ m
- ② $(3\sqrt{3}-3)$ m ③ $(4\sqrt{3}-1)$ m

해설

 $(3\sqrt{3}+3)$ m

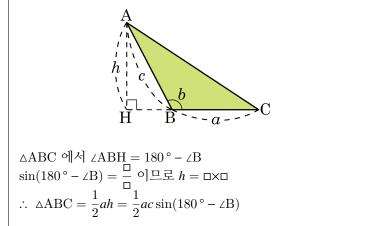
등대의 높이를 *h* 라 하면


 $\angle \text{CBH} = 45^{\circ}$ 이므로 $\overline{\text{BH}} = h$

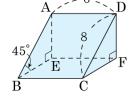
∠CAH = 30° 이므로

 $6+h: h=\sqrt{3}:1, \sqrt{3}h=6+h$ $(\sqrt{3}-1)h=6$

 $\therefore h = \frac{6}{\sqrt{3} - 1} = 3(\sqrt{3} + 1) = 3\sqrt{3} + 3(m)$


10. 다음 그림의 $\triangle ABC$ 의 넓이는?

- ① $7\sqrt{2} \text{ cm}^2$ ② $14\sqrt{2} \text{ cm}^2$ ③ $21\sqrt{2} \text{ cm}^2$ ④ $28\sqrt{2} \text{ cm}^2$ ⑤ $56\sqrt{2} \text{ cm}^2$


 $\frac{1}{2} \times 7 \times 8 \times \sin 45^{\circ} = 28 \times \frac{\sqrt{2}}{2} = 14 \sqrt{2} (\text{cm}^2)$

11. 다음은 둔각삼각형에서 두 변의 길이와 그 끼인 각의 크기가 주어질 때, 그 삼각형의 넓이를 구하는 과정이다. □ 안에 알맞은 것은?

- ① $\frac{h}{a}$, a, $\tan(180^\circ \angle B)$ ② $\frac{c}{a}$, a, $\sin(180^\circ \angle B)$ ③ $\frac{h}{c}$, c, $\cos(180^\circ \angle B)$ ④ $\frac{c}{h}$, c, $\sin(180^\circ \angle B)$ ⑤ $\frac{h}{c}$, c, $\sin(180^\circ \angle B)$

 $\triangle ABC$ 에서 $\angle ABH = 180$ ° $- \angle B$ $\sin(180\,^{\circ} - \angle B) = \frac{h}{c} \, \circ] 므로$ $h = c \times \sin(180\,^{\circ} - \angle B)$ 따라서 $\triangle ABC = \frac{1}{2}ah = \frac{1}{2}ac\sin(180\,^{\circ} - \angle B)$ 이다. 12. 다음 그림과 같이 $\overline{\text{CD}}$ = 8, $\overline{\text{AD}}$ = 6, ∠ABE = 45°인 삼각기둥이 있다. 이 삼각기둥의 부피는?

- ① $12\sqrt{6}$ ④ $68\sqrt{6}$

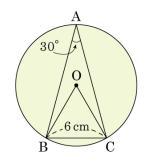
3 48

 $\overline{\mathrm{BE}} = 8 \times \cos 45$ ° $= 4\sqrt{2}$

삼각기둥의 부피는 $4\sqrt{2} \times 4\sqrt{2} \times \frac{1}{2} \times 6 = 96$ 이다.

13. 다음 그림에서 \overline{AB} 의 길이는?

- ① 12 **4** 15
- ② 13 **⑤**16
- ③ 14


$\overline{\mathrm{AH}} = 8\sin 30^{\circ} = 4$

해설

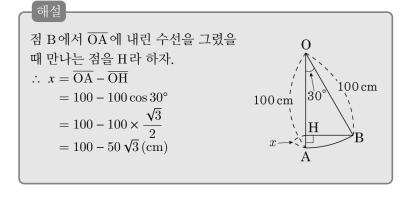
 $\overline{\rm CH} = 8\cos 30\,^\circ = 4\,\sqrt{3}$

 $\overline{BH} = 4\sqrt{3} \tan 60^{\circ} = 4\sqrt{3} \times \sqrt{3} = 12$ $\therefore \overline{AB} = \overline{AH} + \overline{BH} = 4 + 12 = 16$

14. 다음 그림과 같이 현 \overline{BC} 의 길이가 $6 \mathrm{cm}$ 인 원 O 에 내접하는 삼각형 ABC 에서 $\angle {\rm BAC} = 30\,^{\circ}$ 일 때, $\triangle {\rm OBC}$ 의 넓이는?

 $\bigcirc 9\sqrt{3} \text{cm}^2$

 $2 18 \sqrt{3} \text{cm}^2$ $4 \ 27 \sqrt{3} \text{cm}^2$ $30 \sqrt{3} \text{cm}^2$


 $3 21 \sqrt{3} \text{cm}^2$

 $\angle BOC = 60\,^{\circ}(\because 5.0 \text{ptBC})$ 의 중심각) $\triangle OBC$ 는 정삼각형이므로 $\overline{OB} = 6 \text{cm}$ 따라서 $\triangle OBC = \frac{1}{2} \times 6 \times 6 \times \sin 60^{\circ}$ $= \frac{1}{2} \times 6 \times 6 \times \frac{\sqrt{3}}{2}$ $= 9\sqrt{3} (\text{cm}^2) \text{ 이다.}$

- 15. 다음 그림과 같이 실의 길이가 100cm 인 추 가 좌우로 진동운동을 하고 있다. 이 실이 $\overline{\mathrm{OA}}$ 와 30° 의 각도를 이루었을 때, 추는 점 A를 기준으로 하여 몇 cm 의 높이에 있는지 구하여라. ① $25 - 20\sqrt{3}$ ② $25 - 50\sqrt{3}$
- 100 cm

O

- ③ $50 20\sqrt{2}$
 - $4 100 25\sqrt{3}$
- \bigcirc 100 50 $\sqrt{3}$

