1. 집합 $A = \{1, 2, 3, 4, 5, \dots, n\}$ 의 부분집합 중에서 원소 1, 3, 5를 반드시 포함하는 부분집합의 개수가 32개일 때, 자연수 n의 값은?

2. 두 집합 A, B에 대하여 $A \cup B = \{x \mid x \in 5$ 이하의 자연수 $\}$, $A = \{2, 3, 5\}$ 일 때, 다음 중 집합 B가 반드시 포함해야 하는 원소는?

3 2, 3, 5

2 1, 3, 5

- ①1, 4
 - (4) 2, 3, 4, 5 (5) 1, 2, 3, 4, 5

3. 세 집합 A, B, X 에 대하여 $(A \cup B) \cap X = X$ 일 때, 다음 중 옳은 것은?

$$\textcircled{1} X \subset (A \cup B)$$

②
$$(A \cap B) \subset X$$

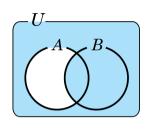
$$\bigcirc$$
 $(A \cup B) \subset X$

$$\textcircled{4} A \cap B = \emptyset$$

$$\bigcirc$$
 $(A \cap B) \subset X \subset (A \cup B)$

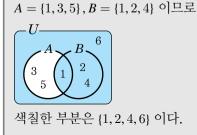
$$(A \cup B) \cap X = X$$
 이면 $X \subset (A \cup B)$ 이다.

②
$$(A \cap B) \subset X$$
 라고 말할 수 없다.


$$\textcircled{4} A \cap B = \emptyset$$
 라고 말할 수 없다.

4. 두 집합 A, B 에 대하여 연산 \triangle , \square 을 $A \triangle B = \{a+b \mid a \in A, b \in B\}$, $A \square B = \{ab \mid a \in A, b \in B\}$ 로 정의한다. $A = \{-1, 0, 1\}$, $B = \{-1, 1\}$ 일 때, $n((A \triangle B) - (A \square B))$ 는?

해설
연산 △,□에 대하여 원소를 각각 구하면 다음과 같다.
$$A \triangle B =$$
 {-2, -1, 0, 1, 2}, $A \square B =$ {-1, 0, 1}
그러므로 $(A \triangle B) - (A \triangle B) =$ {-2, 2} $\therefore n((A \triangle B) - (A \square B)) = 2$


5. 전체집합 $U = \{1, 2, 3, 4, 5, 6\}$ 의 두 부분집합 A, B 에 대하여 $A = \{x|x = 5 \text{ 이하의 홀수}\}$, $B = \{x|x = 4 \text{ 이야스}\}$ 이 때 다음 베 다이어 그래에서 새치되 보보으

 $B = \{x | x = 0 \}$ 일 때, 다음 벤 다이어그램에서 색칠된 부분을 나타내는 집합은?

① $\{1, 2, 4\}$ ② $\{1, 2, 6\}$ ③ $\{1, 3, 6\}$ ④ $\{1, 2, 4, 6\}$ ⑤ $\{1, 2, 5, 6\}$

해설

6. 전체집합 $U = \{x \mid x \in 10 \text{ 이하의 자연수}\}$ 에서 두 조건 p,q 를 만족하는 두 집합을 각각 P,Q라 하자. $P = \{x \mid x \in 20 \text{ 배수}\}$, $Q = \{x \mid x \in 30 \text{ 배수}\}$ 일 때, $p \rightarrow \sim q$ 가 거짓임을 보이는 원소는?

해설
$$p\to\sim q$$
의 반례는 $P\not\in Q^c$ 을 만족하는 원소이다. 즉, P 의 원소이면서 Q^c 의 원소가 아닌 것이므로 $P\cap (Q^c)^c=P\cap Q$ $\therefore P\cap Q=\{6\}$

7. 명제 $x^2 + 2x + a \neq 0$ 이면 $x + 1 \neq 0$ 이다'가 참이 되도록 하는 상수 a 의 값은?

해설
대우인 '
$$x+1=0$$
이면 $x^2+2x+a=0$ 이다.'가 참이 되어야
한다.
 $(-1)^2+2\cdot(-1)+a=0$
∴ $a=1$

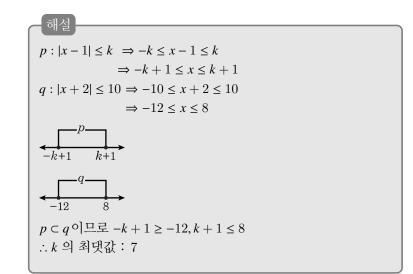
8. 두 명제 $p \rightarrow q$ 와 $r \rightarrow \sim q$ 가 모두 참일 때, 다음 명제 중 반드시 참인 것을 모두 고르면?

$$p \rightarrow q$$
와 $r \rightarrow \sim q$ 가 참이면 그 대우인 $\sim q \rightarrow \sim p$, $q \rightarrow \sim r$ 이 참 $p \rightarrow q \rightarrow \sim r$ 이므로 $p \rightarrow \sim r$ 가 참이고 그 대우인 $r \rightarrow \sim p$ 가 참

9. x, y가 실수일 때. |x| + |y| = |x + y|가 되기 위한 필요충분조건을 구하면?

② xy > 0

 \bigcirc $xy \leq 0$


③ xy ≥ 0

양변을 제곱하면 $x^2 + y^2 + 2|xy| = x^2 + y^2 + 2xy$ $\therefore |xy| = xy$ 가 성립하려면 $xy \ge 0$ 일 때이다.

① xy = 0

4 xy < 0

10. 두 조건 $p: |x-1| \le k$, $q: |x+2| \le 10$ 에 대하여 $p \vdash q$ 이기 위한 충분조건이다. 상수 k 의 최댓값은? (단, $k \ge 0$ 이다.)

11. $\{(A \cap B) \cup (A - B)\} \cap B = A$ 가 성립하기 위한 필요충분조건으로 알맞은 것은?

 \bigcirc A \cup B = A

(4) A \cap B = \emptyset

12. 실수 전체의 집합의 부분집합 A 가 다음의 두 조건을 만족한다.

(가) $1 \in A$ (나) $a \in A$ 이면 $\sqrt{2}a \in A$

이 때, 다음 [보기] 중 옳은 것을 모두 고른 것은?

보기

- \bigcirc 집합 A 는 유한집합이다.
- \bigcirc 임의의 자연수 n 에 대하여 $2^n \in A$ 이다.

해설

① 조건 (개에서 $1 \in A$ 이므로 조건 (내에 의하여 $\sqrt{2} \in A$, $(\sqrt{2})^2 \in A$, $(\sqrt{2})^3 \in A$, \cdots , 즉, $(\sqrt{2})^n$ (n 은 자연수) 꼴로 나타나는 수는 모두 집합 A 의

원소이므로 A 는 무한집합이다.

- ① ①에서 $(\sqrt{2})^2 \in A$, $(\sqrt{2})^4 \in A$, $(\sqrt{2})^6 \in A$, \cdots , 즉 $2 \in A$, $2^2 \in A$, $2^3 \in A$, \cdots 이므로 임의의 자연수 n 에 대하여 $2^n \in A$ 이다.
- (반례)
 집합 A = {0, 1, √2, (√2)², (√2)³, ···}은 주어진 조건 (개, 내를 모두 만족하지만 원소 중 가장 작은 수는 0 이다.
 이상에서 옳은 것은 ○뿐이다.

13. 집합 $A = \{x \mid x \vdash 27 \text{ 의 약수}\}$ 일 때, 다음을 만족하는 집합 B 의 개수를 구하여라.

 $\{1\} \subset B \subset A, \ n(B) = 3$

•			

정답: 3 개

 $A = \{1, 3, 9, 27\}$ 집합 $B \leftarrow 9$ 원소 1 을 포함한 집합 A 의 부분집합 중 원소의 개수가

3 개인 집합이므로 {1, 3, 9}, {1, 3, 27}, {1, 9, 27} 의 3 개이다.

- **14.** $\{a, b, c, d, e\}$ 의 부분집합 중에서 a 또는 d 를 포함하는 부분집합의 개수를 구하면?
 - ① 4 개 ② 8 개 ③ 10 개 ④ 12 개 ⑤ 24 개

해설

(i) a 을 포함하는 경우

$$2^{5-1} = 2^4 = 16$$
 (개)

(ii) d 를 포함하는 경우

 $2^{5-1} = 16$ (개)

(i) a 와 d 를 모두 포함하는 경우

 $2^{5-2} = 8$ (개)

따라서 구하는 부분집합의 개수는

16+16-8=24 (개)이다.

15. 집합 $A = \{x | x \vdash 15$ 의 약수 $\}$, $B = \{x | x \vdash 9$ 의 약수 $\}$ 에 대하여 $(A \cup B) \cap X = X$, $(A \cap B) \cup X = X$ 를 만족하는 집합 X의 개수를 구하여라.

▷ 정답: 8개

$$A = \{1, 3, 5, 15\}, B = \{1, 3, 9\}$$
이므로 $A \cap B = \{1, 3\}$

 $(A \cup B) \cap X = X$ 이므로 $X \subset (A \cup B)$ $(A \cap B) \cup X = X$ 이므로 $(A \cap B) \subset X$ $\therefore (A \cap B) \subset X \subset (A \cup B)$

 $A \cup B = \{1, 3, 5, 9, 15\}$

{1, 3, 5, 9, 15}의 부분집합이므로(집합 X의 갯수) = 2⁵⁻² = 2³ = 8(개)

16. 전체집합 U의 두 부분집합 A, B에 대하여 다음 보기 중 옳은 것을 모두 골라라.

보기

© $A = \{\emptyset\}$ 이면 n(A) = 0이다.

② U^c 은 모든 집합의 부분집합이다.

답:

답:

답:

▷ 정답 : □

▷ 정답 : ②

▷ 정답: □

해설

 \bigcirc $B \subset A$ 이면 $n(B) \leq n(A)$ 이다.

© $A = \{\phi\}$ 이면 n(A) = 1 이다. ② $U^C = \phi$ 은 모든 집합의 부분집합이다.

17. 전체집합 $U = \{x \mid x \in 15 \text{ oheal } 26\}$ 에 대하여 $A = \{1, 3, 7, 11\}$, $B = \{7, 13\}$ 일 때, 다음 보기에서 옳지 않은 것은?

 \triangle $A \cap B^c = \{1, 3, 7, 11\}$

 \triangle $A^c \cup B^c = \{1, 3, 5, 9, 11, 13, 15\}$

 $\bigcirc A^c \cap B^c = \{5, 9, 15\}$

답:

▷ 정답 : □

해설

 $A = \{1, 3, 7, 11\}, B = \{7, 13\}$ © $A \cap B^c = A - B = \{1, 3, 11\}$

 $U = \{1, 3, 5, 7, 9, 11, 13, 15\},\$

18. 전체집합 $U = \{x | x \vdash 30$ 이하의 자연수 $\}$ 의 세 부분집합 $A = \{x | x = 30$ 이하의 6의 배수 $\}$,

 $B = \{x | x = 30$ 이하의 9의 배수 $\}$,

 $C = \{9, 12, 18, 20, 25\}$ 에 대하여 $A \triangle B = (A \cap B) \cup (A \cup B)^c$ 일 때,

 $n((A \triangle B) \cap (A \triangle C))$ 의 값을 구하여라.

답: ➢ 정답 : 22

해설

$$(A \triangle B) \cap (A \triangle C)$$
 를 벤 다이어그램에 나타내면 다음과 같다.
$$U$$

$$n(A \cap B \cap C) = 1$$
, $n((A \cup B \cup C)^c) = 21$
 $\therefore n((A \triangle B) \cap (A \triangle C)) = 1 + 21 = 22$

19. 두 집합 $A=\{3,6,a+2,10\},\ B=\{2\times a,3,b,5\}$ 에 대하여 $A\subset B,$ $B\subset A$ 일 때, a+b 의 값을 구하여라.

- ▶ 답:
- ➢ 정답: 13

집합 A 에 원소 5 가 속해야 하므로 a+2=5 이다. $\therefore a=3$ $A=\{3,6,5,10\}$, $B=\{6,3,b,5\}$ 에서 원소 10 이 집합 B 에 있어야 하므로 b=10 이다. 따라서 a+b=3+10=13 이다.