1. 다음 중 일차함수인 것은?

$$\bigcirc 2x = 8 - x$$

$$\bigcirc$$
 4y = 2(x + 2y) + 3

해설

$$\bigcirc$$
 $y = 2x - 10$
따라서 일차함수인 것은 \bigcirc , @ 이다.

2. 함수 f(x) = -ax + 1 에 대하여 f(-2) = -1 일 때, a 의 값을 구하면?

해설
$$f(x) = -ax + 1 에서$$

$$f(-2) = -a \times (-2) + 1 = 2a + 1 이다.$$
 따라서 $2a + 1 = -1$ 이므로
$$2a = -2 이다.$$

 $\bigcirc -2$

 $\therefore a = -1$

- 3. 다음 중에서 y가 x의 일차함수인 것을 모두 골라라.
 - ① 밑변과 높이가 각각 2 cm 와 x cm 인 삼각형의 넓이는 $y \text{ cm}^2$ 이다.
 - ② 가로와 세로의 길이가 각각 2 cm와 x cm 인 직사각형의 둘레의 길이는 y cm이다.
 - ③ y = x(x-4)
 - 41 분당 통화료가 x원일 때, 6분의 통화료는 y원이다.
 - ⑤ 지름이 x m 인 호수의 넓이는 $y \text{ m}^2$ 이다.

- ① y = x
- ② y = 2x + 4

4. 다음 중 y가 x에 관한 일차함수가 <u>아닌</u> 것은?

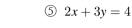
- ① 밑변의 길이가 $x \, \text{cm}$ 이고 넓이가 $10 \, \text{cm}^2$ 인 삼각형의 높이는 $y \, \text{cm}$ 이다.
- ② 300짜리 지우개 *x* 개를 사고 3000 원을 지불했을 때 받은 거스름돈은 *y* 원이다.
- ③ 반지름의 길이가 x cm 인 원의 둘레의 길이는 y cm이다.
- ④ 밤의 길이 x시간과 낮의 길이 y시간의 합은 24시간이다.
- ⑤ yL들이 물통에 매 분 3L씩 물을 채우는 데 걸리는 시간은 x분이다.

따라서 일차함수 $y = ax + b (a \neq 0)$ 꼴을 만족하지 않는 것은

①
$$y = \frac{20}{x}$$

②
$$y = -300x + 3000$$

$$3 y = 2\pi x$$


$$y = -x + 24$$

$$\bigcirc$$
 $y = 3x$

$$y = \frac{20}{2}$$
이다.

$$-2x + 1$$

③ $y = \frac{2}{r}$ 은 일차함수가 아니다.

$$+3y=4$$

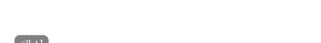
 $3y = \frac{2}{3}$

3. 일차함수 f(x) 에 대하여 y = 3x + 2 이고, f(x) = 5 일 때 x 의 값은?

해설
$$f(x) = 5 는 y = 5 를 의미한다. 따라서 $5 = 3x + 2$ 이다. 그러므로 $x = 1$$$

함수 f(x) = 3x - 1 에 대하여 다음 중 함숫값이 옳은 것은?

①
$$f(0) = 0$$
 ② $f\left(\frac{1}{3}\right) = -1$ ③ $f(1) = 2$ ④ $f(-1) = -2$ ⑤ $f(2) = 6$


③ $f(1) = 3 \times 1 - 1 = 2$ ④ $f(-1) = 3 \times (-1) - 1 = -4$ ⑤ $f(2) = 3 \times 2 - 1 = 5$ 8. 일차함수 y = f(x) 에서 f(x) = 3x - 2 일 때, 2f(-2) 의 값을 구하여라.

해설
$$f(-2) = -6 - 2 = -8$$

$$2f(-2) = 2 \times (-8) = -16$$

일차함수
$$f(x) = 2x - 1$$
에 대하여 $f(4)$ 의 값은?

① 3

 \bigcirc 13

10. 일차함수
$$f(x) = 3x + 1$$
에 대하여 $f(-2)$ 의 값은?

해설
$$f(x) = 3x + 1 \, \text{에} \ x = -2 \, \ensuremath{\stackrel{\text{\tiny odd}}{=}} \ \text{대입하면}$$

$$f(-2) = 3 \times (-2) + 1 = -5$$

11. 일차함수 y = ax 의 그래프가 (-3, 9)를 지난다고 할 때, 다음 중 이 그래프 위에 있지 않은 점은?

(2, 6)

(0, 0)

 \bigcirc (4, -12)

① (1, -3)

(4) (3, -9)

해설

$$y = ax$$
 의 그래프가 점 (-3, 9)를 지나므로 $9 = a(-3), a = -3$
이다.

y = -3x의 그래프 위에 있지 않은 점은 점 (2, 6)이다.

12. 일차함수 $y = -\frac{2}{3}x + 1$ 의 그래프 위의 한 점의 좌표가 $\left(a, \frac{4}{3}a\right)$ 일 때, 4a 의 값을 구하면?

해설
$$A\left(a,\,\frac{4}{3}a\right) \stackrel{=}{=} 2^{\frac{1}{3}}x + 1 \text{ 에 대입하면}$$

$$\frac{4}{3}a = -\frac{2}{3}a + 1$$

$$\therefore a = \frac{1}{2}$$
 따라서 $4a = 4 \times \frac{1}{2} = 2$ 이다.

13. 일차함수
$$y = ax - 5$$
가 점 $(2, 3)$ 을 지날 때, a 의 값은?

해설

$$y = ax - 5$$
의 그래프 위에 점 (2, 3)이 있으므로,
 $3 = a \times 2 - 5$
 $a = 4$ 이다.

①
$$(-2, 5)$$
 ② $(-3, 6)$

$$\bigcirc$$
 (-3, 6) \bigcirc (-5, 2)

14. 다음 중 일차함수 y = -x + 3의 그래프 위의 점이 아닌 것은?

15. 다음 중 일차함수 y = -2x + 1의 그래프 위의 점을 고른 것은?

보기

 \bigcirc (0, 2) \bigcirc (1, -1) \bigcirc (-1, 2)

② (3, −5) □ (−2, 3)

 $\bigcirc -1 = -2 \times 1 + 1$ ② $-5 = -2 \times 3 + 1$ 이므로

ⓐ $-5 = -2 \times 3 + 1$ 이므로 ⑥, ⓐ 은 y = -2x + 1 그래프 위에 있는 점이다.

16. 다음 중 일차함수
$$y = 4x$$
 의 그래프를 평행이동한 그래프가 아닌 것은?

①
$$y = 4x + 1$$
 ② $y - 2 = 4x$
② $y = 3x + \frac{4}{3}$ ④ $y = 4x + \frac{2}{5}$
③ $y + 7 = 4x - \frac{1}{7}$

4 가 아닌 것을 보고도 바로 알 수 있다.

해설
$$y = 4x 를 평행이동하면 $y - b = 4(x - a)$ 의 형태를 가져야 한다. 보기 중 이러한 형태가 아닌 것은 ③ $y = 3x + \frac{4}{3}$ 이다. 기울기가$$

17. 일차함수 y = 4x - 3의 그래프를 x축의 방향으로 $-\frac{2}{3}$ 만큼 평행이동한 것으로 옳은 것은?

①
$$y = 4x + \frac{1}{3}$$
 ② $y = 4x - \frac{5}{3}$ ③ $y = 4x - \frac{13}{3}$
② $y = 4x - \frac{1}{3}$

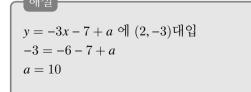
해설
$$y = 4x - 3$$
의 그래프를 x 축의 방향으로 $-\frac{2}{3}$ 만큼 평행이동한 것은 $y = 4\left(x + \frac{2}{3}\right) - 3$ 이므로 정리하면 $y = 4x - \frac{1}{3}$ 이다.

18. 일차방정식 mx - y - 4 = 0의 그래프를 y축 방향으로 1만큼 평행 이동하였더니 일차함수 y = 2x - 3이 되었다. 이 때, 상수 m의 값은?

19. 두 점 (1, 2), (3, -4)를 지나는 직선을 y축 방향으로 2만큼 평행이 동한 직선이 일차방정식 ax-y+b=0일 때, 상수 a, b의 합 a+b의 값은?

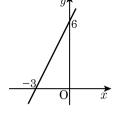
두 점
$$(1,2)$$
, $(3,-4)$ 를 지나는 직선의 방정식은 $y=-3x+5$ y 축의 방향으로 2만큼 평행이동한 직선의 방정식은 $y=-3x+7$ 이 된다.
한편, $3x+y-7=0$, $-3x-y+7=0$ 이므로 $ax-y+b=0$ 에서 $a=-3$, $b=7$ 이다.

20. 일차함수 f(x) = 2x + b는 f(-1) = 1을 만족하고, 이 때 f(x)를 y축 방향으로 -2만큼 평행이동시킨 함수식은?


①
$$y = 2x$$
 ② $y = 2x - 2$ ③ $y = 2x + 1$ ③ $y = -2x + 1$

해설
$$f(x)=2x+b \ \ \ f(-1)=1 \equiv \mathbb{ P} 족하므로 \ 1=2\times (-1)+b$$
 , $b=3$ 이다. 따라서 주어진 함수는 $f(x)=2x+3$ 이고 이것을 y 축 방향으로 -2 만큼 평행이동 시킨 함수식은 $f(x)=2x+1$ 이다.

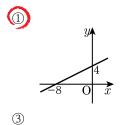
21. 일차함수 y = -2x + 6 의 그래프를 y 축의 방향으로 k 만큼 평행이동한 그래프가 점 (2, 1) 를 지날 때, k 의 값은?


$$y = -2x + 6 + k$$
 가 $(2, 1)$ 을 지나므로 $(2, 1)$ 을 대입하면 $1 = 2 + k$
 $\therefore k = -1$

22. 일차함수 y = -3x - 7 의 그래프를 y 축의 방향으로 a 만큼 평행 이동하였더니, 점 (2, -3) 을 지났다. 이때, a의 값을 구하면?

23. 일차함수 y = ax + 3의 그래프를 y축의 방향으로 b만큼 평행이동하면 다음 그림의 그래프가 된다고 한다. 이때, 일차함수 y = ax + b위에

(1, 6) (3, 9)


해설 그림의 그래프는 (-3, 0), (0, 6)을 지나므로 직선의 방정식은 y = 2x + 6이다. 따라서 a = 2이다. 일차함수 y = ax + 3의 그래프를 y축의 방향으로 b만큼 평행 이동한 식 y = ax + 3 + b가 y = 2x + 6이므로 b = 3이다. 따라서 y = ax + b는 y = 2x + 3이므로 점 (1, 6)은 y = ax + b위의 점이 아니다. **24.** y = -3x + b의 그래프는 점 (1, 1)을 지나고, y축으로 a만큼 평행이 동한 그래프가 y = -3x + 7와 겹쳐질 때, 알맞은 a의 값은?

해설
$$y = -3x + b$$
의 그래프가 점 $(1, 1)$ 을 지나므로 $1 = -3 \times 1 + b$, $b = 4$
$$y = -3x + 4 = y$$
축으로 a 만큼 평행한 그래프는 $y = -3x + 4 + a$ 인데 이것이 $y = -3x + 7$ 이므로 $a = 3$ 이다.

25. 점 (1, 2)를 지나는 y = -2x + b의 그래프를, y축으로 a만큼 평행이 동시켰더니 이 그래프가 y = -2x + 9와 완전히 겹쳐졌다. 이때, $a \times b$ 의 값은?

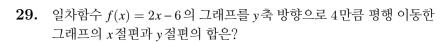
해설
$$y = -2x + b$$
의 그래프가 점 $(1, 2)$ 를 지나므로 $2 = -2 \times 1 + b$, $b = 4$
$$y = -2x + 4$$
를 y 축으로 a 만큼 평행한 그래프는 $y = -2x + 4 + a$ 인데 이것이 $y = -2x + 9$ 이므로 $a = 5$ 이다. 따라서 $a \times b = 5 \times 4 = 20$ 이다.

26. 일차함수 f(x) 는 $y = \frac{1}{2}x + 4$ 이다. 그래프의 모양으로 옳은 것은?

$$\begin{array}{c}
y \\
\hline
0 \\
\hline
7 \\
\hline
x
\end{array}$$

 $y = \frac{1}{2}x + 4$ 가 y = ax + b 일 때, $(x 절편) = -\frac{b}{a}$, x = -8, (y 절편) = b, y = 4이다.

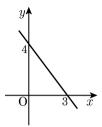
그래프 중 ①의 모양을 가져야 한다.


- **27.** 일차함수 $y = \frac{1}{2}x 3$ 의 그래프를 y축 방향으로 2만큼 평행 이동한 그래프의 x절편을 구하면?
 - $\bigcirc 1 -3 \qquad \bigcirc 2 \qquad \bigcirc 3 -2 \qquad \bigcirc 4 \ 0 \qquad \bigcirc 3 \ 3$

해설
일차함수
$$y=\frac{1}{2}x-3$$
의 그래프를 y 축 방향으로 2만큼 평행
이동한 함수는 $y=\frac{1}{2}x-1$ 이므로 x 절편은 $0=\frac{1}{2}x-1, x=2$
이다.

28. 일차함수 y = 4x - 3의 그래프를 y축의 방향으로 5만큼 평행 이동한 그래프와 x축에서 만나는 점은?

①
$$(1, 0)$$
 ② $\left(-\frac{1}{2}, 0\right)$ ③ $\left(\frac{1}{2}, 0\right)$ ④ $\left(0, \frac{1}{2}\right)$ ⑤ $\left(0, -\frac{1}{2}\right)$


애설
$$y=4x-3$$
을 y 축의 방향으로 5만큼 평행이동하면 $y=4x-3+5=4x+2$ x 절편 : $-\frac{1}{2}$ 따라서 x 축과 만나는 점은 $\left(-\frac{1}{2},\ 0\right)$ 이다.

① 4 ② -4 ③ -1 ④ 1 ⑤ -7

$$f(x) = 2x - 6$$
의 그래프를 y 축 방향으로 4만큼 평행 이동한
그래프는 $f(x) = 2x - 2$ 이므로
 $y = 0$ 일 때, $0 = 2x - 2$, $x = 1$
 $x = 0$ 일 때, $y = 2 \times 0 - 2$, $y = -2$
∴ $1 + (-2) = -1$

- **30.** 다음 그래프를 보고 옳지 <u>않은</u> 것은?
 - ① x 절편은 3 이다.
 - ② y 절편은 4 이다.
 - ③ 그래프의 기울기는 $\frac{3}{4}$ 이다.
 - ④ 그래프의 식은 $\frac{x}{3} + \frac{y}{4} = 1$ 이다.
 - ⑤ x 축과 만나는 점은 (3, 0) 이다.

भ ट	
③ 그래프의 기울기는 x 가 3 증가할 때 y 가 4 감소하므로 $-\frac{4}{3}$	1
이다.	

31. 일차함수 y = 2x + b의 그래프가 점 (1, 1)을 지날 때, y절편은?

(1, 1)을 대입하면
$$b = -1$$
이다.
 $y = 2x - 1$ 이므로 y 절편은 -1 이다.

32. 일차함수 y = -2x + 4와 y = 3x + b의 x절편이 같을 때, b의 값을 구하면?

- **33.** 두 일차함수 y = -2x + 4 와 y = ax + 2 는 x 축 위의 같은 점을 지난다고 한다. 이 때, a 의 값은?
 - $\bigcirc -2$ $\bigcirc -1$ $\bigcirc 1$ $\bigcirc 4$ $\bigcirc 2$ $\bigcirc 4$

해설
두 직선이
$$x$$
축 위의 같은 점을 지난다는 것은 x 절편이 같다는
뜻이다.
 $y = -2x + 4$ 에서 $0 = -2x + 4$, $x = 2$ 이므로 x 절편은 2이고,
 $y = ax + 2$ 에 $(2, 0)$ 를 대입하면 $0 = 2a + 2$
 $\therefore a = -1$

34. 두 일차함수 y = ax + b 와 y = 4x - 2 가 y 축 위에서 서로 만난다고 한다. a, b 의 값으로 옳은 것은?

①
$$a = 4$$
, $b = -2$ ② $a = -4$, $b = -2$

③
$$a = 4, b = 2$$
 ④ $a = -4, b = 2$

⑤
$$a$$
는 알 수 없다. $b = -2$

해설 y 축 위에서 서로 만난다는 것은 두 함수의 y 절편이 같다는 뜻이다. 따라서 b = -2 이고 a 의 값은 알 수 없다.

35. 점
$$(4m, m)$$
 은 일차함수 $y = \frac{1}{2}x - 2$ 의 그래프 위에 있다. 또한, $y = mx + b$ 의 y 절편이 3일 때, 이 함수의 x 절편은 ? (단, m 은

상수)

①
$$-2$$
 ② -1 ③ 0 ④ $-\frac{1}{2}$ ⑤ $-\frac{3}{2}$

$$(4m, m)$$
 을 $y = \frac{1}{2}x - 2$ 에 대입하면, $m = 2m - 2$
 $\therefore m = 2$
 $y = mx + b$ 에서 $y = 2x + b$ 이고, y 절편이 3 이므로 $b = 3$
 $\therefore y = 2x + 3$
 x 절편은 $0 = 2x + 3$ 에서 $-\frac{3}{2}$ 이다.

36. 두 점 (3, 2), (-1, m) 을 지나는 직선의 기울기가 -4 일 때, 상수 m 의 값을 구하여라.

37.
$$x$$
 절편이 3 , y 절편이 2 인 일차함수의 그래프의 기울기는?

$$\frac{2}{2}$$

$$-\frac{2}{3}$$

$$3 - \frac{1}{3}$$

$$\bigcirc -\frac{2}{3}$$
 $\bigcirc -\frac{1}{3}$ $\bigcirc \frac{3}{2}$ $\bigcirc -\frac{3}{2}$

이 함수는 (3, 0), (0, 2) 를 지나므로 기울기는 $\frac{0-(2)}{3-0} = -\frac{2}{3}$ 이다.

- **38.** 일차함수 y = 3x 1 의 그래프에 대한 설명으로 옳지 <u>않은</u> 것은?
 - ① x의 값의 증가량에 대한 y의 값의 증가량의 비율은 3이다.
 - ② 기울기는 3 이다.
 - ③x 의 값이 2 만큼 증가할 때, y 의 값은 4 만큼 증가한다.
 - ④ x의 값이 3 만큼 증가할 때, y의 값은 9 만큼 증가한다.
 - ⑤ *x* 의 값이 1 에서 3 까지 증가할 때, *y* 의 값은 2 에서 8 까지 증가한다.

해설

x 의 값의 증가량에 대한 y 의 값의 증가량의 비율은 기울기이므로 3 이다.

기울기가 3 이므로 x 의 값이 2 만큼 증가하면 y 의 값은 6 만큼 증가한다. 따라서 ③이 정답이다.

39. 일차함수 $y = \frac{3}{2}x - 1$ 에서 y 값의 증가량이 6 일 때, x 값의 증가량은?

①
$$\frac{3}{2}$$
 ② 3 ③ $\frac{7}{2}$ ④ 4 ⑤ $\frac{9}{2}$

$$\frac{3}{2} = \frac{6}{x^{9} \frac{3}{5}}$$
그러므로 $x^{9} \frac{3}{5}$ 증가량은 4

40. 두 점 (-2, k), (2, -2) 를 지나는 일차함수의 그래프의 기울기의 절댓 값이 $\frac{3}{2}$ 이고, 왼쪽 위로 향하는 형태이다. 이때, k 의 값을 구하면?

$$\frac{(y 의 값의 증가량)}{(x 의 값의 증가량)} = (기울기) 이므로$$
$$\frac{k - (-2)}{-2 - 2} = -\frac{3}{2}, \ \frac{k + 2}{-4} = -\frac{3}{2}$$
$$k + 2 = -4 \times \left(-\frac{3}{2}\right), \ k + 2 = 6$$

 $\therefore k = 4$

41. 좌표평면 위의 세 점 (-5, 3), (1, 3), (3, *a*) 가 한 직선 위에 있을 때, 상수 *a* 의 값과 직선의 방정식은?

①
$$0, x = 0$$
② $3, y = 3$

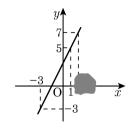
② 3,
$$x = 3$$
 ③ 3, $x = -3$ ⑤ 3, $y = -3$

42. 세 점
$$(-1, 3)$$
, $(1, -1)$, $(k, k-1)$ 이 한 직선 위에 있을 때, k 의 값은?

①
$$\frac{1}{2}$$
 ② $\frac{2}{3}$ ③ $\frac{3}{2}$

(기울기) =
$$\frac{-1-3}{1-(-1)} = \frac{k-1-(-1)}{k-1}$$

-2 $(k-1) = k$, $-3k = -2$


$$(기끌기) = \frac{-1-3}{1-(-1)} = \frac{k-1-(-1)}{k-1}$$
$$-2(k-1) = k, -3k = -2$$
$$\therefore k = \frac{2}{3}$$

43. 세 점 (3, -5), (-2, 10), (4, n) 이 한 직선 위에 있을 때, n 의 값은?

①
$$-6$$
 ② -7 ③ -8 ④ -9 ⑤ -10

해설 세 점이 한 직선 위에 있기 위해서는 기울기가 같아야 한다. 두 점
$$(3, -5)$$
, $(-2, 10)$ 을 지나는 직선의 기울기는 $\frac{10 - (-5)}{-2 - 3} =$ -3 이므로 $\frac{n - (-5)}{4 - 3} = -3$ 이다. 따라서 $n = -8$ 이다.

44. 어떤 일차함수의 그래프에 구멍이 뚫려 y 좌표가 7일 때의 x 좌표를 알 수 없게 되었다. 이 그래프의 기울기와 y 좌표가 7일 때의 x 좌표 a를 순서대로 바르게 나열한 것은?

- 함수의 기울기: -2 a = 2
- ② 함수의 기울기: 2, a = 3
- ③ 함수의 기울기: 2, a = 2
- ④ 함수의 기울기: 2, a = -2
- ⑤ 함수의 기울기: -2, a=1.5

이 함수의 그래프는 (-3, -3), (1, 5), (a, 7)의 세 점을 지난다. 따라서 $\frac{5-(-3)}{1-(-3)}=\frac{7-5}{a-1}$ 이므로

기울기는 2, a = 2 이다.

45. 세 점 A(-3,-2) , B(-1,2) , C(2,k) 가 한 직선 위에 있을 때 , 점 C 의 좌표는?

세 점 A, B, C 가 안 식선 위 $\frac{2-(-2)}{-1-(-3)} = \frac{k-2}{2-(-1)}$ 이다.

$$\frac{2 \cdot (3)}{-1 - (-3)} = \frac{k}{2 - (-1)} \circ | \mathbb{Z}$$

$$\therefore k = 8$$

.. k = 8따라서 점 C 의 좌표는 (2, 8) 이다. **46.** 일차함수 y = 2x + 1의 그래프를 y축 방향으로 -5만큼 평행 이동한 그래프의 기울기를 p, x절편을 r이라 할 때, p + r의 값은?

해설
$$y=2x+1$$
의 그래프를 y 축 방향으로 -5 만큼 평행 이동한 그래 프는 $y=2x+1-5$ 이므로 $y=2x-4$ 이다. 이 그래프의 기울기는 2 이고 x 절편은 $0=2x-4$, $x=2$ 이므로 $p+r=2+2=4$ 이다.

47. 일차함수 y = -2x + m의 그래프가 점 (0, 4)를 지날 때, y = mx + 4 의 x절편은?

해설
$$y = -2x + m$$
의 y 절편이 4 이므로, $m = 4$ 이다. 따라서 $y = 4x + 4$ 의 x 절편을 구하기 위해 $y = 0$ 을 대입하면 $0 = 4x + 4$ $\therefore x = -1$

48. 일차함수 $y = \frac{2}{3}x + 1$ 의 그래프의 y 절편을 a, y = -3x + 6의 그래프의 기울기를 b라 할 때, y = ax + b의 x 절편은?

애설
$$y = \frac{2}{3}x + 1$$
의 그래프의 y 절편은 1 이므로 $a = 1$
$$y = -3x + 6$$
의 그래프의 기울기는 -3 이므로 $b = -3$ 이다. 따라서 주어진 함수는 $y = x - 3$ 이고, 이 함수의 x 절편은 3 이다.

49. 일차함수 f(x) = mx - 1의 그래프에서 x절편이 1이고, y절편이 n일 때, 상수 m, n의 합 m + n의 값은?

①
$$-4$$
 ② -3 ③ -2 ④ -1 ⑤ 0

$$f(x) = mx - 1$$
의 그래프에서 x 절편이 1이므로 $x = 1$, $y = 0$ 을 대입하면 $0 = m - 1$ $m = 1$ $f(x) = mx - 1$ 의 y 절편은 -1 이므로 $n = -1$ 이다. $\therefore m + n = 1 + (-1) = 0$ 이다.

50. y절편을 알 수 없는 일차함수의 기울기가 -3이고 x절편이 -1이라고 한다. 이때, y절편과 기울기의 합은?

해설
기울기가 -3인 일차함수를
$$y = -3x + b$$
라고 놓으면
 x 절편이 -1이므로 (-1, 0)을 지난다.
∴0 = (-3) × (-1) + b
 $b = -3$ 이므로 y 절편은 -3이므로 y 절편과 기울기의 합은 -6

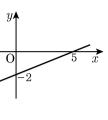
이다.

51. 일차함수 y = -2x + 1 의 그래프를 y 축의 음의 방향으로 4 만큼 평행이동하였을 때, 이 그래프가 지나지 않는 사분면은?

52. 다음 일차함수의 그래프 중 다음 그림의 일 차함수의 그래프와 제 4 사분면에서 만나는 것은?

①
$$y = 2x - 2$$

해설

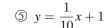

①
$$y = 2x - 2$$

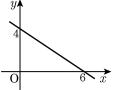
③ $y = 2x + 4$

(2) y = -x - 1

⑤
$$y = x + 1$$

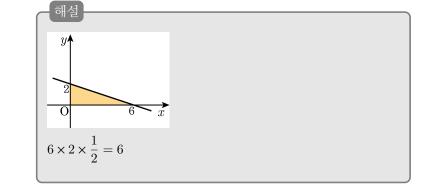
- ③ 제 3 사분면에서 만난다.
- ④ 제 1 사분면에서 만난다.
- ⑤ 제 3 사분면에서 만난다.

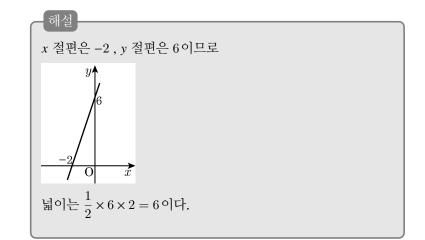



다음 일차함수의 그래프 중 오른쪽 그래프와 제 1사분면에서 만나지 않는 것은?

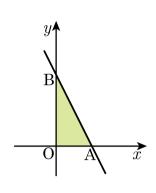
①
$$y = 2x - 2$$

$$2 2 y = 5x - 1$$

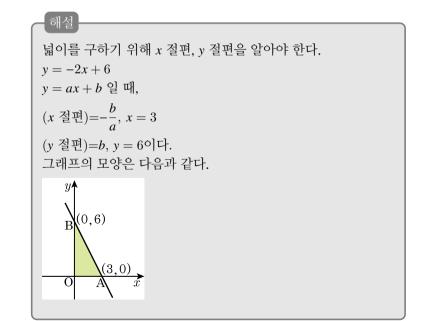

$$\bigcirc y = -2x + 3$$


③ 제 2사분면에서 만난다.

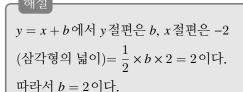
54. 일차함수 $y = -\frac{1}{3}x + 2$ 의 그래프와 x 축, y 축으로 둘러싸인 삼각형의 넓이는?



55. 일차함수 y = 3x + 6 의 그래프와 x 축, y 축으로 둘러싸인 도형의 넓이는?


① 2 ② 4 ③ 6 ④ 8 ⑤ 10

56. 일차함수 *y* = −2*x* + 6 의 그래프가 *x* 축과 만나는 점을 A, *y* 축과 만나는 점을 B 라고 할 때, △AOB 의 넓이로 옳은 것은?



① 8 ② 9 ③ 16 ④ 18 ⑤ 20

57. 일차함수 y = x + b의 그래프가 x축, y축으로 둘러싸인 도형의 넓이가 2일 때, 상수 b의 값을 구하여라.

58. 일차함수 y = -2x + b의 그래프가 다음과 같을 때, x축, y축으로 둘러싸인 도형의 넓이가 9이 되었다. 알맞은 상수 b의 값은?

되었다. 알맞은 상수
$$b$$
의 값은? - 1 4 2 3 $\frac{1}{2}$ 3 3 4 -2 3 $\frac{1}{2}$

해설
$$y = -2x + b \text{ 에서 } y \text{ 절편은 } b, x \text{ 절편은 } -3$$
 삼각형 넓이는 $\frac{1}{2} \times 3 \times (-b) = 9$
$$\therefore b = -6$$

- **59.** 두 일차함수 y = -4x + 20, y = 2x 6 의 그래프와 x 축으로 둘러싸인 부분의 넓이는?
 - ① 2

- \bigcirc $\frac{7}{3}$
- 3

4

 $\bigcirc \frac{10}{3}$

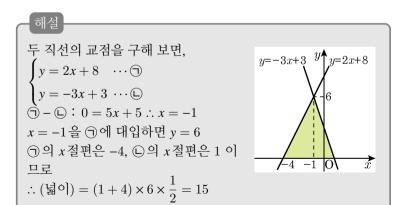
$$y = -4x + 20$$
 는 x 절편 5, y 절편 20 이다. $v = 2x - 6$ 은 x 절편 3, y 절편 -6 이다.

그래프로 그리면 다음과 같다. 높이는 y = -4x + 20 과 y = 2x - 6 이 공통으로

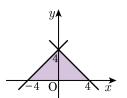
두 함수를 연립하면 -4x + 20 = 2x - 6 이

지나는 점의 y좌표이다.

므로 $x = \frac{13}{3}$, $y = \frac{8}{3}$ 이다. 높이는 $\frac{8}{3}$ 이다.

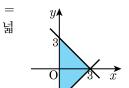

그러므로 삼각형의 넓이를 구하면 $\frac{1}{2} \times 2 \times \frac{8}{3} = \frac{8}{3}$ 이다.

$$\begin{cases} y = 2x + 8 \\ y = -3x + 3 \end{cases}$$


의 그래프와 x 축으로 둘러싸인 부분의 넓이는?

- ② 16 ③ 18 ④ 24

(5) 30


61. 다음 그림과 같이 두 일차함수 y = -x + 4 와 y = x + 4의 그래프와 x축으로 둘러싸인 도형의 넓이는?

해설 문제의 도형은 밑변의 길이와 높이가 각각
$$8$$
, 4 인 삼각형이므로 $(\ensuremath{ \mbox{id}}) = \frac{1}{2} \times 8 \times 4 = 16$ 이다.

③ 20

62. 다음 그림과 같이 두 일차함수 y = x - 3과 y = -x + 3의 그래프와 y축으로 둘러싸인 도형의 넓이는?

(4) -9

$$(넓이) = \frac{1}{2} \times 6 \times 3 = 9$$
이다.

63. 두 일차함수
$$y = -\frac{1}{2}x + 1$$
 와 $y = 2x + 7$ 의 그래프와 x 축으로 둘러싸인 삼각형의 넓이를 구하면?

$$y = -\frac{1}{2}x + 1 \text{ 의 } x \text{ 절편: } 2$$

$$y = 2x + 7 \text{ 의 } x \text{ 절편: } -\frac{7}{2}$$
교점: $-\frac{1}{2}x + 1 = 2x + 7 \Rightarrow \left(-\frac{12}{5}, \frac{11}{5}\right)$
넓이: $\left(2 + \frac{7}{2}\right) \times \frac{11}{5} \times \frac{1}{2} = \frac{121}{20}$

64. 다음 중 기울기가 이고, y절편이 3인 일차함수의 그래프는?

①
$$y = 2x + 3$$
 ② $y = -2x + 3$ ③ $y = 3x + 2$
④ $y = -3x + 2$ ⑤ $y = -3x - 2$

기울기가
$$2$$
이고 y 절편이 3 인 일차함수의 그래프는 $y=2x+3$ 이다.

65. 일차함수 y = ax + b의 y절편은 5이고, 기울기가 -2라고 한다. a - b의 값은?

① 5
$$2-5$$
 ③ 7 $4-7$ ⑤ 2

ッ절편은 5이고, 기울기가 -2이므로 일차함수는
$$y = -2x + 5$$
이고, $a = -2$, $b = 5$ 이다.
∴ $a - b = -2 - 5 = -7$ 이다.

66. 일차함수 y = 2x - 8의 그래프와 평행하고, y절편이 3인 일차함수의 식은?

①
$$y = 2x + 3$$
 ② $y = 3x - 8$ ③ $y = 2x - 5$
④ $y = 2x - 3$ ⑤ $y = 3x + 3$

기울기가 2이고, y절편이 3이므로 y = 2x + 3 이다.

- **67.** 기울기가 -2이고, y절편이 -6인 일차함수의 그래프의 x절편은?
 - ① 3 ② -3 ③ -2 ④ 2 ⑤ -6

68. y가 x에 대한 일차함수이고, x = 0일 때 y = 4이다. 또, x의 값이 2만큼 증가할 때 y의 값이 3만큼 감소하는 일차함수의 그래프는?

①
$$y = -\frac{2}{3}x + 4$$
 ② $y = \frac{2}{3}x - 4$ ③ $y = -\frac{3}{2}x + 4$ ④ $y = \frac{3}{2}x - 4$ ⑤ $y = 2x - 3$

$$y$$
 절편: 4, 기울기: $-\frac{3}{2}$ 이므로
따라서 $y = -\frac{3}{2}x + 4$

69. 두 점 (3,2),(5,k) 를 지나는 직선의 그래프가 두 점 (4,6),(8,10) 을 지나는 그래프와 서로 평행일 때, k 의 값을 구하면?

해설
$$(7)울7) = \frac{10-6}{8-4} = 1 ,$$

$$\frac{k-2}{5-3} = 1$$

$$\therefore k = 4$$

70. 기울기가
$$4$$
이고, 점 $(1,-2)$ 를 지나는 직선의 방정식은?

①
$$y = 4x - 8$$

$$\bigcirc y = 4x - 6$$

$$3 y = 4x - 4$$

$$x+4$$

y = 4x + b 가 점 (1, -2) 지나므로

-2 = 4 + bb = -6

 $\therefore y = 4x - 6$

71. 점 (-2, 3)을 지나고 기울기가 -1인 일차함수의 식은?

①
$$y = x$$

y = -x - 1

②
$$y = x + 1$$

$$\bigcirc y = -x + 1$$

3 v = x - 1

기울기가 -1이므로 y = -x + b이고 점 (-2, 3)을 지난다. 따라서 대입하면 3 = 2 + b이므로 b = 1이므로 y = -x + 1이다.

72. 기울기가 -2인 일차함수 y = ax + b가 점 (1, 3)을 지날 때, a + b의 값은?

애실 기울기가
$$-2$$
이므로 $a=-2$ 이고 $y=-2x+b$ 가 점 $(1, 3)$ 을 지나므로 $b=5$ 이다. 따라서 $a+b=-2+5=3$ 이다.

73. y = 2x + 5에 평행하고 점 (3, 2)를 지나는 직선의 방정식은?

①
$$y = 2x + 4$$

$$y = 2x - 4$$

$$y = 3x + 6$$

$$y = 3x - 6$$

⑤
$$y = -2x + 5$$

기울기가 2이고
$$(3, 2)$$
를 지나므로 $y = 2(x-3) + 2 = 2x - 4$

74. 두 점 (2, -4), (-1, 7)을 지나는 직선이 y축과 만나는 점을 A 라고 할 때, 점 A의 v 좌표를 고르면?

 $2\frac{8}{3}$

기울기는 $\frac{(y^{\circ})}{(r^{\circ})}$ 값의 증가량) 이므로

 $\frac{7-(-4)}{-1-2} = \frac{11}{-3} = -\frac{11}{3}$ 이다. y = ax + b에서

 $y = -\frac{11}{3}x + b$ 이므로 (2, -4)를 대입하면

 $y = -\frac{11}{3}x + \frac{10}{3}$ 이다. 이 직선의 y 절편은 $\frac{10}{3}$ 이다.

 $-4 = -\frac{22}{3} + b$, $b = \frac{10}{3}$ 이고, 따라서 이 직선의 일차함수의 식은

 $\bigcirc \frac{11}{3}$

75. 두 점
$$(3, -2)$$
, $(5, 4)$ 를 지나는 직선이 $mx + ny = 11$ 일 때, $m - n$ 의 값을 구하여라.

m - n = 3 - (-1) = 4

76. 두 점 (3,7), (2,4)를 지나는 직선이 점 (a, 1)을 지날 때, a의 값을 구하여라.

해설
$$(기울기) = \frac{7-4}{3-2} = 3 ,$$

77. 두 점 (-3,10), (1, 18)을 지나는 직선의 방정식이
$$mx + ny + 16 = 0$$
일 때, $m - n$ 의 값은?

(기울기) =
$$\frac{18-10}{1-(-3)} = \frac{8}{4} = 2$$

 $y = 2x + b$ 에 $(1, 18)$ 을 대입하면
 $18 = 2 + b$, $b = 16$,
 $y = 2x + 16$, $2x - y + 16 = 0$,
 $m = 2$, $n = -1$
 $\therefore m - n = 2 - (-1) = 3$

78. *x* 절편이 2, *y* 절편이 4인 일차함수의 식은?

①
$$y = \frac{5}{3}x - \frac{2}{5}$$

② $y = -2x + 4$
② $y = \frac{2}{3}x - \frac{2}{3}$
③ $y = -3x + 16$

②
$$y = -2x + 4$$
 ③ $y = -3x + 15$ ⑤ $y = -3x + 16$

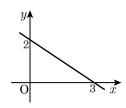
$$\frac{x}{2} + \frac{1}{2}$$

$$\frac{x}{2} + \frac{y}{4} = 1$$

따라서 $y = -2x + 4$

79. 일차함수 y = ax + b의 x절편이 4, y절편이 -4일 때, a + b의 값은?

$$\frac{x}{4} + \frac{y}{-4} = 1$$


$$x - y = 4$$

$$y = x - 4 \circ | 므로$$

$$a = 1, b = -4 \circ | 다.$$

$$\therefore a + b = 1 + (-4) = -3$$

80. 어떤 일차함수의 그래프가 다음 그림과 같을 때 그 일차함수의 식은?

①
$$y = 2x - 3$$

②
$$y = 3x - 2$$

$$y = 2x + 2$$

$$\bigcirc y = -\frac{2}{3}x + 2$$

$$y$$
절편이 2이므로 일차함수의 방정식은 $y = ax + 2$ 이고 이 함수는

또한 점 (3,0)을 지나므로. 0 = 3a + 2, $a = -\frac{2}{3}$

$$\therefore y = -\frac{2}{3}x + 2$$