등식 $2x^2 - 3x - 2 = a(x-1)(x-2) + bx(x-2) + cx(x-1)$ 이 x에 관한 항등식이 되도록 할 때, 2ab의 값은?

양변에
$$x = 0$$
을 대입하면, $-2 = 2a$ $\therefore a = -1$ 양변에 $x = 1$ 을 대입하면, $-3 = -b$ $\therefore b = 3$ $\therefore 2ab = -6$

2. 세 개의 다항식
$$x^3 + ax + b$$
, $x^3 + cx^2 + a$, $cx^2 + bx + 4$, 의 공약수 중하나가 $x - 1$ 일 때, $a + b + c$ 의 값은?

① 2 ②
$$-2$$
 ③ 3 ④ -3 ⑤ 4

$$f(x) = x^{3} + ax + b \to f(1) = 1 + a + b = 0 \cdot \cdot \cdot \bigcirc$$

$$g(x) = x^{3} + cx^{2} + a \to g(1) = 1 + c + a = 0 \cdot \cdot \cdot \bigcirc$$

$$h(x) = cx^{2} + bx + 4 \to h(1) = c + b + 4 = 0 \cdot \cdot \cdot \bigcirc$$

$$\bigcirc + \bigcirc + \bigcirc \land |A| \ 2(a + b + c) + 6 = 0$$

 $\therefore a+b+c=-3$

3.
$$z_1 = 1 - i, z_2 = 1 + i$$
 일 때, $z_1^3 + z_2^3$ 의 값은? (단, $i = \sqrt{-1}$)

(1)
$$4-2i$$
 (2) 0

$$\bigcirc -2 + 4i$$

$$z_1 + z_2 = 2, \ z_1 z_2 = 2$$

$$z_1^3 + z_2^3 = (z_1 + z_2)^3 - 3z_1 z_2 (z_1 + z_2)$$

$$= 8 - 12$$

= -4

③ 20

 $2x^2 + 4x - 1 = 0$ 의 두 근을 α, β 라 할 때, $\alpha^2 \beta + \alpha \beta^2$ 의 값은?

$$\alpha + \beta = -2, \ \alpha \beta = -\frac{1}{2}$$

$$\therefore \ \alpha^2 \beta + \alpha \beta^2 = \alpha \beta (\alpha + \beta) = -\frac{1}{2} \times (-2) = 1$$

5. 길이가 6인 선분을 같은 방향으로 2:1로 내분하는 점과 외분하는 점 사이의 거리를 구하여라.

▶ 답:

▷ 정답: 8

해설

길이가 6인 선분을 OA라 하고,

O를 원점으로 잡으면 A의 좌표는 (6,0)이 선분을 2:1로 내분하는 점 $P(x_1)$ 라 하면

$$x_1 = \frac{2 \times 6 + 1 \times 0}{2 + 1} = 4$$

2 : 1로 외분하는 점 $Q(x_2)$ 라 하면

2:1도 외문하는 참 $Q(x_2)$ 다 하면 $x_2 = \frac{2 \times 6 - 1 \times 0}{2 - 1} = 12$

따라서 $\overline{PQ} = 12 - 4 = 8$

6. 다항식 $f(x) = 4x^3 + ax^2 + x + 1$ 을 $x + \frac{1}{2}$ 로 나누면 나머지가 1일 때, 다항식 f(x)를 2x + 1로 나눈 몫 Q(x)와 나머지 R을 구하면?

①
$$Q(x) = 2x^2 - x, R = 1$$
 ② $Q(x) = 2x^2 + x, R = 1$ ③ $Q(x) = 2x^2 - 2x, R = 1$ ④ $Q(x) = 4x^2 - 2x, R = \frac{1}{2}$

(5) $Q(x) = 4x^2 + 2x, R = \frac{1}{2}$

 $f\left(-\frac{1}{2}\right) = 1 = \frac{a}{4}$: a = 4

따라서
$$f(x) = 4x^3 + 4x^2 + x + 1$$

 $= x(4x^2 + 4x + 1) + 1$
 $= x(2x + 1)^2 + 1$
 $2x + 1$ 로 나누면 $Q(x) = 2x^2 + x$, $R = 1$

7. (x-1)(x+2)(x-3)(x+4)를 전개할 때, 각 항의 계수의 총합을 a, 상수항을 b라 할 때, a+b의 값을 구하면?

(
$$x-1$$
)($x+2$)($x-3$)($x+4$)
= (x^2+x-2)(x^2+x-12)($x^2+x=X$ (치한))
= ($X-2$)($X-12$)
= $X^2-14X+24$
= (x^2+x) $^2-14(x^2+x)+24$
= $x^4+2x^3-13x^2-14x+24$
∴ $a=1+2-13-14+24=0, b=24$
∴ $a+b=0+24=24$

각 항 계수의 총합 구하기
$$x = 1$$
 대입, $a = 0$

ⓒ 상수항 구하기 x = 0대임. b = 24

해설

8. $\frac{2x + ay - b}{x - y - 1}$ 가 $x - y - 1 \neq 0$ 인 어떤 x, y의 값에 대하여도 항상 일정한 값을 가질 때, a - b의 값을 구하여라.

$$\frac{2x + ay - b}{x - y - 1} = k$$
라 놓으면

$$2x + ay - b = k(x - y - 1)$$

x, y에 대하여 정리하면.

$$(2-k)x + (a+k)y - b + k = 0$$

위의 식이 x , y 에 대한 항등식이어야 하므로 $2-k=0$. $a+k=0$. $-b+k=0$

$$\therefore k = 2, a = -2, b = 2$$

$$\therefore a - b = -4$$

9. |x-2|+|x-3| = 1을 만족하는 실수 x의 개수는?
 ① 0개
 ② 1개
 ③ 2개

④ 3개 **③**4개이상

해설
$$|x-2|+|x-3|=1 에서 i) x < 2 일 때, -(x-2)-(x-3)=1 \therefore x=2 (성립하지 않음) ii) 2 ≤ x < 3 일 때,$$

(x-2) - (x-3) = 1 $\therefore 0 \cdot x = 0$ (모든 실수)

iii) $x \ge 3$ 일 때, (x-2) + (x-3) = 1

 $\therefore x = 3$

10. 이차방정식 $(1-i)x^2 + (-3+i)x + 2 = 0$ 의 해는 x = a 또는 x = p + qi이다. 이 때, a + p + q의 값을 구하여라. (단, a, p, q는 실수)

 $x = 1 \stackrel{\leftarrow}{\to} x = 1 + i$ $\therefore a + p + a = 3$

해설
$$(1-i)x^2 + (-3+i)x + 2 = 0 의 양변에 1 + i 를 곱하면$$

$$(1+i)(1-i)x^2 + (1+i)(-3+i)x + 2(1+i) = 0$$

$$2x^2 - 2(2+i)x + 2(1+i) = 0$$

$$x^2 - (2+i)x + 1 + i = 0$$

$$(x-1) \{x - (1+i)\} = 0$$

.1.
$$x$$
에 대한 이차방정식 $x^2 - 2(k-a)x + k^2 + a^2 - b + 1 = 0$ 이 k 의 값에 관계없이 중근을 가질 때, a,b 의 값은?

①
$$a = 1, b = 1$$
 ② $a = 1, b = 0$ ③ $a = 0, b = 1$ ④ $a = -1, b = 0$

⑤
$$a = -1, b = -1$$

$$\frac{D}{4} = 0$$
 ○ □ 르 로,

$$(k-a)^2 - (k^2 + a^2 - b + 1) = 0$$

$$-2ak + (b-1) = 0$$

$$\therefore a = 0, b = 1$$

12. 이차방정식
$$4x^2 - ax + 2a = 0$$
의 두 근의 합과 곱을 두 근으로 하는 이차방정식이 $2x^2 - bx + 1 = 0$ 일 때, $a + b$ 의 값은? (단, $a > 0$)

 $\therefore a+b=3+2=5$

두 근이 α, β 일 때,

이는
$$x$$
 의 계수를 잘못 봐서 $3-2i$, $3+2i$ 라는 근을 구했고, 성제는 상수항을 잘못 봐서 $2-i$, $2+i$ 라는 근을 구했을 때, $\left|\frac{bc}{a^2}\right|$ 의 값은?

13. 종섭이와 성제가 이차방정식 $ax^2 + bx + c = 0$ 을 각각 풀었다. 종섭

종섭이는 x의 계수를 잘못 보았으므로 상수항은 참이다.

두 근의 곱 =
$$\frac{c}{a}$$
 = $(3-2i)(3+2i)$ = $9+4$ = 13 성제는 상수항을 잘못 보았으므로 x 의 계수는 참이다. 두 근의 합= $-\frac{b}{a}$ = $2-i+2+i=4$

14. 3km 떨어진 두 마을 ㄱ, ㄴ이 있다. ㄱ마을에는 100명의 학생이, ㄴ마을에는 50명의 학생이 있다. ㄱ, ㄴ두 마을 사이에 학교를 세울 때 통학거리의 합이 최소가 되려면 어디에 학교를 세워야 하는가?

- ① 기마을
 - ② ㄱ마을에서 ㄴ마을 쪽으로 1km지점
 - ③ 가운데
 - ④ ㄱ마을에서 ㄴ마을 쪽으로 2km지점
- ⑤ ㄴ마을

해설

ㄱ마을에서 xkm 떨어진 곳에 학교를 세운다면 ㄴ마을 으로부터는 (3-x)km 떨어져 있다. 통학거리의 합 S 는 S = 100x + 50(3-x)

= 150 + 50x $x \ge 0$ 이므로 x = 0 일 때 S 는 최소가 된다. 즉, ㄱ마을에 학교를 세우면 된다.

- **15.** $1^2 2^2 + 3^2 4^2 + 5^2 \dots + 99^2$ 을 계산하여라.
 - ① 99 ② 100 ③ 4950
 - **④** 5050 **⑤** 10000

$$1^{2} - 2^{2} + 3^{2} - 4^{2} + 5^{2} - \dots + 99^{2}$$

$$= 99^{2} - 98^{2} + 97^{2} - 96^{2} + \dots + 3^{2} - 2^{2} + 1^{2}$$

$$= (99^{2} - 98^{2}) + (97^{2} - 96^{2}) + \dots + (3^{2} - 2^{2}) + 1^{2}$$

$$= (99 - 98)(99 + 98) + (97 - 96)(97 + 96) + \dots + (3 - 2)(3 + 2) + 1$$

$$= (99 + 98) + (97 + 96) + \dots + (3 + 2) + 1$$

$$= 1 + 2 + 3 + \dots + 99$$

$$= (1 + 99) + (2 + 98) + \dots + (49 + 51) + 50$$

$$= 4950$$

16. 두 복소수
$$x,y$$
 에 대하여 $x+y=2+3i$ 라 할 때, $x\overline{x}+x\overline{y}+\overline{x}y+y\overline{y}$ 의 값은?

①
$$13$$
 ② $11 + 2i$ ③ 12 ④ $12 - i$ ⑤ 11

$$x + y = 2 + 3i, \overline{x} + \overline{y} = 2 - 3i$$

$$x\overline{x} + x\overline{y} + \overline{x}y + y\overline{y}$$

$$= x(\overline{x} + \overline{y}) + y(\overline{x} + \overline{y})$$

$$= (x + y)(\overline{x} + \overline{y})$$

$$= (2 + 3i)(2 - 3i)$$

= 13

17. x = 1 일 때 최솟값 1 을 갖고, y 절편이 2 인 포물선을 그래프로 하는 이차함수의 식을 $y = a(x - p)^2 + q$ 라 할 때, 상수 a, p, q 의 곱 apq 의 값을 구하여라.

 $y = (x-1)^{2} + 1$ p = 1, q = 1 $\therefore apq = 1$

 $y = a(x-1)^2 + 1$

a + 1 = 2, a = 1

 $= a(x^2 - 2x + 1) + 1$ $= ax^2 - 2ax + a + 1$

18. 이차함수 $y = x^2 + kx + k$ 의 최솟값을 m 이라 할 때, m 의 최댓값을 구하여라.

▷ 정답: 1

답:

$$y = x^2 + kx + k = \left(x + \frac{k}{2}\right)^2 - \frac{k^2}{4} + k$$

최솟값
$$m = -\frac{k^2}{4} + k$$

$$m = -\frac{k^2}{4} + k = -\frac{1}{4}(k-2)^2 + 1$$
$$k = 2 일 \text{ 때, } m \in \text{최댓값 } 1 \oplus \text{갖는다.}$$

19.
$$\begin{cases} |x| + x + y = 10 \\ x + |y| - y = 12 \end{cases}$$
 일 때, $x + y$ 의 값은?

①
$$-2$$
 ② 2 ③ $\frac{18}{5}$ ④ $\frac{22}{3}$ ⑤ 22

$$|x| + x + y = 10 \qquad \cdots \qquad \bigcirc$$

$$x + |y| - y = 12 \qquad \cdots \qquad \bigcirc$$

$$x \le 0 \cap \Box, y = 10, x = 12$$
이것은 $x \le 0$ 을 만족하지 않는다.
$$x > 0 \cap \Box 2x + y = 10 \cdots \qquad \bigcirc$$

$$y \ge 0 \cap \Box x = 12, y = -14$$
이것은 $y \ge 0$ 을 만족하지 않는다.
$$y < 0 \cap \Box, x - 2y = 12 \cdots \qquad \bigcirc$$

$$\Box, \Box \cap A = \frac{32}{5}, y = -\frac{14}{5}$$

$$\therefore x + y = \frac{18}{5}$$

20. x에 대한 두 이차방정식 $x^2 + ax + b = 0$, $x^2 + bx + a = 0$ 이 한 개의 공통근 α 를 가지고, 공통이 아닌 두 근의 비가 3:5일 때, a-b의 값을 구하면?

①
$$-\frac{1}{2}$$
 ② $-\frac{1}{3}$ ③ $-\frac{1}{4}$ ④ $-\frac{1}{5}$ ⑤ 0

해설
 공통근이
$$\alpha$$
이므로 $\alpha^2 + a\alpha + b = 0 \cdots$ ①
 $\alpha^2 + b\alpha + a = 0 \cdots$ ②
 ①-ⓒ에서 $(a-b)(\alpha-1) = 0$
 $a = b$ 이면 모순이므로 $a \neq b$ ∴ $\alpha = 1$
 $x^2 + ax + b = 0$, $x^2 + bx + a = 0$ 의 공통이 아닌 근을 각각 β , γ 라 하면 근과 계수와의 관계에 의하여 $1 \cdot \beta = b$, $1 \cdot \gamma = a$
 따라서, 공통이 아닌 두 근의 비는
 β : $\gamma = b$: $a = 3$: $5 \cdots$ ©
 한편, ①에 $\alpha = 1$ 을 대입하면 $a + b + 1 = 0 \cdots$ ②
 ©, ②에서 $a = -\frac{5}{8}$, $b = -\frac{3}{8}$

 $\therefore a - b = -\frac{1}{4}$

21. 모든 x에 대하여 $f(x+1) - f(x-1) = 6x^2 + 6$, f(0) = 1을 만족시키는 다항식 f(x)가 있다. 다음은 자연수 n에 대하여 $(x+\alpha)^n = x^n + n\alpha x^{n-1} + \dots + \alpha^n$ 을 이용하여, f(x)를 구하는 과정이다.

해설
$$f(x+1) - f(x-1)$$

$$= a_n\{(x+1)^n - (x-1)^n\} + a_{n-1}\{(x+1)^{n-1} - (x-1)^{n-1}\} \cdots$$

$$= a_n\{(x^n + nx^{n-1} + \cdots) - (x^n - nx^{n-1} + \cdots)\} + a_{n-1}\{(x^{n-1} + (n-1)x^{n-2} + \cdots) - (x^{n-1} - (n-1)x^{n-2} + \cdots)\} + \cdots$$

$$= a_n(2nx^{n-1} + \cdots) + a_{n-1}\{2(n-1)x^{n-2} + \cdots\} + \cdots$$

$$= 2na_nx^{n-1} + \{(n-2) \bar{x}\} \circ \bar{x}\} \circ \bar{x}$$

$$\therefore 2na_nx^{n-1} = 6x^2 \circ \bar{x}\}$$

$$\therefore 2na_nx^{n-1} = 6x^2 \circ \bar{x}$$

$$\therefore n = 3, a_n = 1$$

22. 두 다항식 $x^3 + ax^2 + bx + 1$ 과 $x^3 + bx^2 + ax + 1$ 의 최대공약수가 일차식일 때, a + b의 값을 구하시오.

$$A(x) = x^3 + ax^2 + bx + 1$$
, $B(x) = x^3 + bx^2 + ax + 1$ 로 놓으면 $A(x) - B(x)$

$$= (x^3 + ax^2 + bx + 1) - (x^3 + bx^2 + ax + 1)$$

= $(a - b)x(x - 1)$

$$=(a-b)x(x-1)$$
 $A(x)$, $B(x)$ 의 최고차항의 계수가 1 이므로 최대공약수는 x 이거 나 $x-1$ 이 될 수 있지만 두 다항식의 상수항이 1이므로 최대공약수는 $x-1$ 이다. 따라서 다항식 $A(x)$ 는 $x-1$ 을 인수로 가지므로 나머지정리에

의하여 A(1) = 1 + a + b + 1 = 0

$$\therefore a+b=-2$$

23. 길이 3인 선분 AB의 양 끝점 A, B가 각각 *x*축, *y*축 위를 움직일 때, 선분 AB를 2:1로 내분하는 점 P의 자취를 구하면?

①
$$\frac{x^2}{2} + y^2 = 1$$
 ② $\frac{x^2}{3} + \frac{y^2}{2} = 1$ ③ $\frac{x^2}{4} + y^2 = 1$
④ $x^2 + \frac{y^2}{4} = 1$ ⑤ $x^2 + 3y^2 = 6$

A(a, 0), B(0, b), P(x, y)라 하면
AB = 3 이므로
$$\sqrt{a^2 + b^2} = 3$$

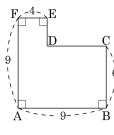
$$\overline{AB} = 3$$
이므로 $\sqrt{a^2 + b^2} = 3$
 $a^2 + b^2 = 9 \cdots$ ①

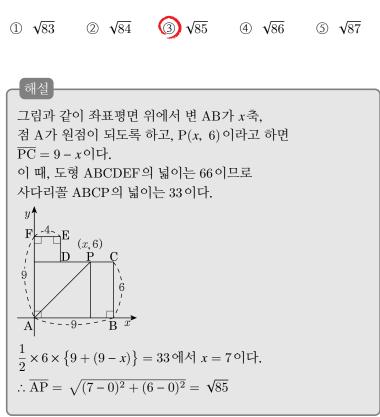
$$P(x, y)$$
는 선분 AB를 $2:1$ 로 내분하는 점이므로 $x = \frac{a}{3}, y = \frac{2b}{3}$
 $\therefore a = 3x, b = \frac{3y}{2} \cdots$ ①

①를 ①에 대입하면
$$9x^2 + \frac{9}{4}y^2 = 9$$

$$\therefore x^2 + \frac{y^2}{4} = 1$$

24. 아래 그림과 같은 도형 ABCDEF가 있다. 변 CD 위에 한 점 P를 잡아 선분 AP를 그었더니 선분 AP에 의해 도형의 넓이가 이등분되었다. 이 때, 선분 AP의 길이를 구하면?





25. 좌표평면 위의 점 P(4, 9)를 지나고 x절편과 y절편, 기울기가 모두 정수인 직선의 개수는 ?

① 4 ② 5 ③ 6 ④ 8 ⑤ 9

$$y$$
 절편 : \bigcirc 에 $x = 0$ 을 대입하면 $y - 9 = -4m$

 $\therefore v = 9 - 4m$

따라서 x 절편, y 절편이 모두 정수가 되기위해서는 m의 값은 9의 약수(음수 포함)이어야 한다.

따라서 *m* = 1, 3, 9, −1, −3, −9 ∴ 직선은 6개 존재한다.