• 이차함수 $y = -3x^2 + 18x$ 을 $y = a(x - p)^2 + q$ 의 꼴로 나타낼 때, 상수 a, p, q 의 합 a + p + q 의 값은?

$$y = -3(x^2 - 6x + 9 - 9) = -3(x - 3)^2 + 27$$

$$a = -3, p = 3, q = 27$$

$$a + p + q = 27$$
이다.

이차함수 $y = 2x^2 + 4x + 1$ 의 꼭짓점의 좌표가 (a, b) 이고, y 절편이 c 일 때. a+b+c 의 값을 구하여라.

$$y =$$

$$y = 2x^2 + 4x + 1$$

$$= 2(x^{2} + 2x + 1 - 1) + 1$$
$$= 2(x + 1)^{2} - 1$$

$$y$$
절편이 c 이므로 $c = 2 \times 0^2 + 4 \times 0 + 1$

꼭짓점의 좌표는 (-1, -1) 이므로 a = b = -1

$$\therefore c = 1$$

$$\therefore a+b+c=-1$$

3. 이차함수 $y = 2x^2 - 8x + 3$ 을 $y = a(x + p)^2 + q$ 의 꼴로 고칠 때, a + p + q 의 값을 구하여라.

$$y =$$

$$y = 2x^{2} - 8x + 3 = 2(x^{2} - 4x) + 3$$
$$= 2(x - 2)^{2} - 8 + 3$$

 $=2(x-2)^2-5$ a = 2 , p = -2 , q = -5

 $\therefore a + p + q = 2 + (-2) + (-5) = -5$

4. 이차함수 $y = x^2 + 2ax + 4$ 의 그래프의 꼭짓점의 좌표가 (1,b) 일 때, a + b 의 값은?

해설

$$y = x^2 + 2ax + 4 = (x + a)^2 - a^2 + 4$$
꼭짓점의 좌표가 $(1,b)$ 이므로
$$-a = 1, -a^2 + 4 = b$$
이다.
$$a = -1, b = 3$$

 $\therefore a+b=2$

이차함수 y = -3x² + 6x + 1 의 꼭짓점의 좌표는?
 ① (-1, 4)
 ② (-1, -4)
 ③ (1, -4)

4 (4,-1) 5 (1, 4)

해설

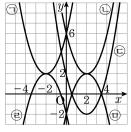
$$y = -3x^{2} + 6x + 1$$

$$= -3(x^{2} - 2x + 1 - 1) + 1$$

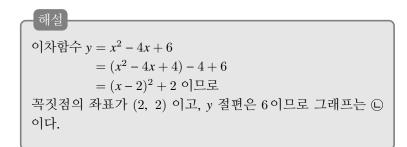
$$= -3(x - 1)^{2} + 4$$

= -3(x-1)² + 4 이므로 꼭짓점의 좌표는 (1, 4) 이다. 6. $y = -2x^2$ 을 x축의 방향으로 3 만큼, y축의 방향으로 1 만큼 평행이동했더니 점(2,a)를 지난다고 한다. a의 값을 구하면?

해설


$$y = -2x^2 \rightarrow y = -2(x-3)^2 + 1$$

점 $(2,a)$ 를 지나므로,
 $a = -2(2-3)^2 + 1 = -1$


7. 다음 중 이차함수 $y = x^2 - 4x + 6$ 의 그래 프를 구하여라.

1 9 0 0 3 6

(5) (**□**)

4 (2)

- 8. 이차함수의 $y = -3x^2$ 의 그래프를 x 축의 방향으로 a 만큼, y 축의 방향으로 b 만큼 평행이동하면 $y = -3x^2 + 12x + 3$ 의 그래프가 된다. 이 때, a, b 의 값을 구하여라.
 - 답:
 - 답:
 - ▷ 정답: a = 2
 - ➢ 정답: b = 15

에실
$$y = -3x^2 + 12x + 3$$
 의 그래프를 $y = a(x - p)^2 + q$ 의 꼴로 나타내면 $y = -3(x - 2)^2 + 15$ 이므로 $y = -3x^2$ 의 그래프를 x 축으로 2, y 축으로 15 만큼 평행이동한 것이다. 따라서 $a = 2$, $b = 15$ 이다.

9. 이차함수 $y = -4x^2$ 의 그래프를 x 축의 방향으로 1 만큼, y 축의 방향으로 -3 만큼 평행이동하면 점(2, a) 를 지난다. a 의 값을 구하여라.

▷ 정답 : -7

의 방향으로 -3 만큼 평행이동하면 $y = -4(x-1)^2 - 3$ 점 (2, a) 를 지나므로

$$\begin{array}{c} A (2, a) = A + 2 = 2 \\ a = -4(2-1)^2 - 3 \end{array}$$

 $\therefore a = -7$

10. 이차함수 $y = -4x^2$ 의 그래프를 x 축의 방향으로 1 만큼, y 축의 방향으로 -3 만큼 평행이동하면 점(2, a) 를 지난다. a 의 값을 구하여라.

 $y = -4x^2$ 의 그래프를 x 축의 방향으로 1 만큼, y 축의 방향으로

$$y = -4(x-1)^2 - 3$$

점 (2, a) 를 지나므로

 $a = -4(2-1)^2 - 3$ ∴ a = -7

11.
$$y = -2x^2$$
을 x 축의 방향으로 3 만큼, y 축의 방향으로 1 만큼 평행이동했더니 $(2, a)$ 를 지난다고 한다. a 의 값을 구하면?

해설

$$y = -2x^2 \implies y = -2(x-3)^2 + 1$$

 $a = -2(2-3)^2 + 1 = -1$

12. $y = -x^2 + 4x - 1$ 의 그래프를 x 축의 방향으로 -2, y축의 방향으로 -3 만큼 평행이동한 그래프의 식은?

$$y = -x^2$$

$$3 y = -x^2 + 8x$$

③
$$y = -x^2 + 8x$$
 ④ $y = -x^2 - 4x$
⑤ $y = -x^2 + 8x - 4$

해설
$$y = -x^2 + 4x - 1 = -(x - 2)^2 + 3$$
꼭짓점 (2,3) 을 x 축의 방향으로 -2 , y 축 방향으로 -3 만큼 평행이동하면 $(0,0)$ 이다. 따라서 구하는 식은 $y = -x^2$ 이다.

13. 다음 이차함수의 그래프를 같은 좌표평면에 그릴 때, 포물선의 폭이 가장 넓은 것은?

② $y = -x^2 + \frac{1}{4}$

③
$$y = 2x^2 - x$$
 ④ $y = \frac{1}{4}x^2 - x + 1$ ⑤ $y = x^2 - 6x + 2$

① $y = -\frac{1}{2}x^2$

 x^2 의 계수의 절댓값이 작을수록 폭이 넓다. 따라서 절댓값이 가장 작은 것은 4이다. **14.** 이차함수 $y = 2x^2 - 12x + 16$ 의 그래프에서 x의 값이 증가함에 따라 y의 값도 증가하는 x의 값의 범위는?

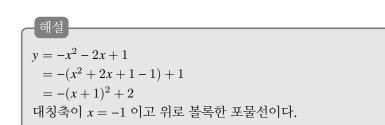
②
$$x > 2$$

⑤ $x < -3$

$$3 x < 3$$

$$y = 2x^{2} - 12x + 16$$

$$= 2(x^{2} - 6x + 9 - 9) + 16$$


15. 이차함수 $y = -x^2 - 2x + 1$ 에서 x 의 값이 증가함에 따라 y 의 값이 감소하는 x 의 값의 범위는?

(3) x < 1

①
$$x < -1$$
④ $x > 1$

$$\Im x > 0$$

② x > -1

16. 이차함수 $y = \frac{1}{3}x^2 + ax + 3$ 의 그래프가 (1,4)를 지난다고 한다. 이 때, x 의 값이 증가할 때 y 의 값은 감소하는 범위를 구하면?

①
$$x > 1$$
 ② $x > 2$ ③ $x < -1$

해설
$$(1,4) 를 대입하면 $a = \frac{2}{3}$ 이다.
$$a = \frac{2}{3} 를 대입하면$$
$$y = \frac{1}{3}x^2 + \frac{2}{3}x + 3$$
$$= \frac{1}{3}(x^2 + 2x) + 3$$$$

 $=\frac{1}{3}(x+1)^2+3-\frac{1}{3}$ 이므로

축의 방정식은 x = -1 이다. 따라서 x < -1 일 때, x 의 값이 증가하면 y 값은 감소한다. **17.** 이차함수 $y = -4x^2 + 8x - 4$ 의 그래프가 x 축과 만나는 점의 좌표는?

$$(1, 0)$$
 $(2, 0)$ $(3, 0)$ $(0, 1)$ $(4, 0)$ $(2, 0)$

해설

$$y = 0$$
 을 대입하면
 $-4x^2 + 8x - 4 = 0$
 $x^2 - 2x + 1 = 0$
 $(x - 1)^2 = 0$

x = 1 $\therefore (1, 0)$

18. 이차함수
$$y = -\frac{1}{3}(x+1)^2 - 4$$
의 y 절편을 구하여라.

$$ightharpoonup$$
 정답: $-\frac{13}{3}$

 $y = -\frac{1}{3}(x+1)^2 - 4$ $= -\frac{1}{3}x^2 - \frac{2}{3}x - \frac{13}{3}$

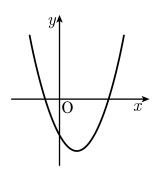
따라서 y절편은 $-\frac{13}{3}$

19. 이차함수
$$y = 2(x-1)^2$$
 의 그래프가 y 축과 만나는 점의 좌표는?

①
$$(0, -1)$$
 ② $(0, 1)$ ③ $(0, -2)$ ④ $(0, 2)$

20. 이차함수
$$y = x^2 - 6x + 5$$
 의 그래프와 x 축과의 교점의 x 좌표와 y 축과 교점의 y 좌표를 구하면?

- ① x 의 좌표:2, 0, y 의 좌표:0
- ② x 의 좌표:-5, -1, y 의 좌표:-5
- ③ x 의 좌표:1, -3, y 의 좌표: $\frac{3}{2}$ ④ x 의 좌표:1, 5, y 의 좌표:5
- ⑤ x 의 좌표:0, 2, y 의 좌표:0


21. 이차함수 $y = (x+3)^2 - 9$ 의 그래프에 대한 설명 중 옳지 <u>않은</u> 것은?

- ① 꼭짓점의 좌표는 (-3, -9) 이다.
- ② 대칭축은 x = -3 이다.
- ③ 그래프는 아래로 볼록한 모양이다.
- ④ *x* 축과 두 점에서 만난다.
- ⑤ 제 1, 2, 3, 4 사분면을 모두 지난다.

해설

⑤ 제 4 사분면을 지나지 않는다.

이차함수 $y = ax^2 - 3x + c$ 의 그래프가 다음과 같을 때, a, c 의 부호는?

①
$$a > 0$$
, $c < 0$ ② $a > 0$, $c > 0$ ③ $a < 0$, $c > 0$

②
$$a > 0$$
, $c > 0$

$$3) \ a < 0, c > 0$$

$$\textcircled{4} \ a < 0 \ , \ c < 0 \qquad \textcircled{5} \ a > 0 \ , \ c = 0$$

(5)
$$a > 0$$
, $c = 0$

아래로 볼록한 그래프이므로 a > 0 y 절편이 음수이므로 c < 0

23. 이차함수 $y = 2x^2 - 4x + 3$ 과 $y = x^2 + ax + b$ 의 꼭짓점의 좌표가 일치할 때, a + b 의 값을 구하여라.

▷ 정답: 0

$$y = 2x^2 - 4x + 3$$
$$= 2(x^2 - 2x + 1 - 1) + 3$$

 $= 2(x-1)^2 - 2 + 3$ $= 2(x-1)^2 + 1$

꼭짓점의 좌표: (1, 1)
꼭짓점의 좌표가 일치하므로
$$y = x^2 + ax + b = (x - 1)^2 + 1 = x^2 - 2x + 2$$

$$\therefore a = -2, \ b = 2, \ a + b = 0$$

24. 다음 이차함수의 그래프 중 $y = 3x^2$ 의 그래프를 평행이동하여 완전히 포갤 수 있는 것을 모두 고르면?

$$\textcircled{1}y = 3x^2 + 1$$

②
$$y = -3x^2 + 4$$

③ $y = \frac{9x^2 - 1}{3}$

$$y = -3(x+1)^2$$

$$y = x^2 - 5x + 2 + 2(x - 1)(x + 1)$$

 $y = ax^2 + bx + c$ 의 그래프에서 a 의 값이 같으면 평행이동하여 두 이차함수의 그래프를 완전히 포갤 수 있다. 따라서 a = 3 인 것은 ①, ③, ⑤이다.

25. $y = -2x^2 - 4x + 10$ 의 그래프에서 x 의 값이 증가할 때, y 의 값은 감소하는 x의 값의 범위는?

②
$$x < 1$$

(5) x < -1

$$y = -2x^2 - 4x + 10$$
$$= -2(x+1)^2 + 12$$

 $\{x \mid x > -1\}$ 이다.

위로 볼록한 모양의 포물선이고 축의 방정식 x = -1 이므로 따라서 x 의 값이 증가할 때, v 의 값은 감소하는 x 의 값의 범위는 **26.** 이차함수 $y = ax^2 - 4x + 6$ 과 x 축과의 교점이 (2, 0) 일 때 다른 한 교점의 좌표는?

①
$$(-4, 0)$$
 ② $(6, 0)$ ③ $(4, 0)$ ④ $(-2, 0)$ ⑤ $(1, 0)$

$$0 = 4a - 8 + 6 \therefore a = \frac{1}{2}$$

$$y = \frac{1}{2}x^2 - 4x + 6 \text{ 의 } x \text{ 절편은 } y = 0 \text{ 대입하고,}$$
양변에 2 를 곱하여 정리해주면,
$$x^2 - 8x + 12 = 0, (x - 2)(x - 6) = 0$$

$$\therefore x = 2, 6$$

따라서 다른 한 교점은 (6, 0)이다.

 $y = ax^2 - 4x + 6$ 에 (2, 0) 을 대입하면

해설

27. 다음 이차함수의 그래프가 x 축과 한 점에서 만나는 것은?

①
$$y = x^2 + 1$$

$$y = x^2 + 2x + 1$$

$$3 v = x^2 - 3x - 2$$

$$y = 2x^2 + 4x + 4$$

한 점에서 만나려면 중근을 가지므로 D = 0일 때이다.

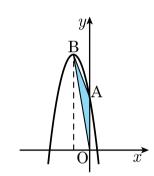
28. 이차함수 $y = x^2 - 6x + 5$ 의 그래프와 x 축과의 교점을 각각 A, B 라하고 꼭짓점의 좌표를 C 라 할 때, \triangle ABC 의 넓이를 구하여라.

$$y = x^2 - 6x + 5 의 x 축과의 교점은$$
$$x^2 - 6x + 5 = 0 의 근과 같다.$$
$$(x - 5)(x - 1) = 0.$$

$$x = 1$$
 또는 $x = 5$,
따라서, $\overline{AB} = 4$,
 $y = x^2 - 6x + 5 = (x - 3)^2 - 4$,

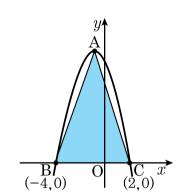
꼭짓점 C(3,-4),

$$\triangle ABC = 4 \times 4 \times \frac{1}{2} = 8$$


29. 포물선 $y = 2x^2 - 5x - 12$ 의 그래프와 x 축과의 교점을 A, B 라고 할 때. \overline{AB} 의 길이를 구하여라.

$$y = 2x^2 - 5x - 12$$
 의 그래프와 x 축과의 교점의 좌표는 $2x^2 - 5x - 12 = 0$ 의 근과 같다. $2x^2 - 5x - 12 = 0$,

(2x+3)(x-4)=0,


$$x = -\frac{3}{2} \, \, \underline{\Xi} \, \underline{\Xi} \, x = 4 \, ,$$
$$\therefore \overline{AB} = 4 - \left(-\frac{3}{2}\right) = \frac{11}{2}$$

30. 이차함수 $y = -x^2 - 6x + 8$ 의 그래프가 다음 그림과 같다. 점 A는 y축과의 교점이고 점 B는 꼭짓점이다. 이 때, ΔAOB의 넓이는? (단, O는 원점이다.)

$$y = -(x+3)^2 + 17$$
이므로 B(-3, 17)
A(0, 8)이므로 $\triangle AOB = \frac{1}{2} \times 8 \times 3 = 12$

31. 다음 그림은 이차함수 $y = -x^2 - 2x + 8$ 의 그래프이다. 꼭짓점을 A, x축과의 교점을 각각 B, C라고 할 때, \triangle ABC의 넓이는?

A(-1,9), B(-4,0), C(2,0)이므로 $\Delta \frac{1}{2} \times 6 \times 9 = 27$ 이다.

32. 이차함수 $y = -\frac{2}{3}x^2 + 4x$ 의 꼭짓점의 좌표를 A, x 축과 만나는 두점을 각각 B, C 라 할 때, \triangle ABC 의 넓이를 구하여라.

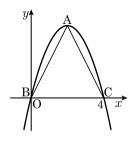
▶ 답:

➢ 정답: 18

 $x^2 - 6x = 0$

$$x$$
 축은 $y = 0$ 일 때의 값이므로 $2x^2 - 12x = 0$

$$x(x-6) = 0$$


$$\therefore x = 0$$
 또는 $x = 6$

B(0, 0), C(6, 0)
$$y = -\frac{2}{3}(x-3)^2 + 6$$
이므로 꼭짓점은 $(3, 6)$ 이다.

따라서 삼각형 ABC 의 넓이는 $\frac{1}{2} \times 6 \times 6 = 18$ 이다.

33. 다음 그림은 이차함수 $y = -x^2 + bx + c$ 의

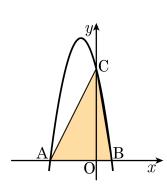
그래프이다. 이 포물선의 x 축과의 교점을 B. C. 꼭짓점을 A 라고 할 때, 삼각형 ABC 의 넓이를 구하여라

- 답:
- ▷ 정답: 8

 $y = -x^2 + bx + c$ 에 (0, 0), (4, 0) 을 대입하여 연립하여 풀면 b = 4, c = 0 이다.

 $y = -x^2 + 4x$, $y = -(x-2)^2 + 4$ 이므로, 꼭짓점 A(2, 4) 이다.

따라서 삼각형 ABC 의 넓이는 $4 \times 4 \times \frac{1}{2} = 8$ 이다.


34. 이차함수 $y = -x^2 + 4x$ 의 그래프가 다음 그림과 같을 때, \triangle ABC 의 넓이를 구하면? (점 A 는 꼭짓점)

① 32 ② 16 ③ 8 ④ 4 ⑤ 2

$$\therefore \triangle ABC = \frac{1}{2} \times 4 \times 4 = 8$$

35. 다음 그림은 이차함수 $y = -x^2 - 4x + 12$ 의 그래프이다. \triangle ABC 의 넓이는?

① 12 ② 24 ③ 36 ④ 48 ⑤ 72

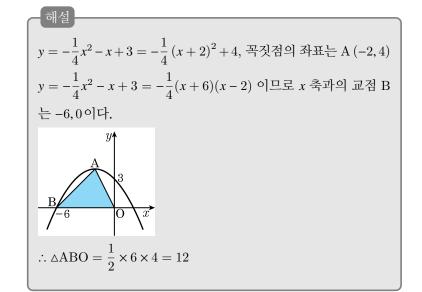
점 C 는 y 절편이므로 C(0,12)이다.

 $\therefore \triangle ABC = \frac{1}{2} \times 8 \times 12 = 48$

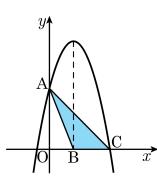
36. 이차함수 $y = \frac{1}{2}x^2 - 2x + 5$ 의 그래프의 y 축과의 교점을 A , 원점을 O , 꼭짓점을 B 라 할 때, \triangle AOB 의 넓이를 구하면?

지원
$$A(0, 5)$$
, $O(0, 0)$
 $y = \frac{1}{2}(x^2 - 4x) + 5 = \frac{1}{2}(x - 2)^2 + 3$
꼭짓점 $B(2, 3)$
 $\therefore \triangle AOB = \frac{1}{2} \times 5 \times 2 = 5$

37. 이차함수 $y = -\frac{1}{4}x^2 - x + 3$ 의 그래프의 꼭짓점을 A , 원점을 O , x


축과의 교점을 B 라 할 때, ΔAOB 의 넓이를 구하면? (단,B < 0)

 \bigcirc 3


② 6

③ 9

(5) 18

38. 다음 그림은 이차함수 $y = -x^2 + 4x + 5$ 의 그래프이다. 점 C, A 는 각각 x 축, y 축과 만나는 점이고, 점 B 는 대칭축과 x 축이 만나는 점이라고 할 때, \triangle ABC 의 넓이를 구하면?

① 6 ②
$$\frac{13}{2}$$
 ③ 8 ④ $\frac{21}{2}$ ⑤ 12

$$y$$
 절편이 5 이므로 $A(0,5)$
 $y = -x^2 + 4x + 5 = -(x - 2)^2 + 9$
축이 $x = 2$ 이므로 $B(2,0)$
 $y = 0$ 일 때 $x^2 - 4x - 5 = 0$
 $(x - 5)(x + 1) = 0$ 이므로 $C(5,0)$

 $\triangle ABC$ 의 밑변 $\overline{BC}=3$, 높이 $\overline{AO}=5$ $\therefore \triangle ABC=\frac{1}{2}\times 3\times 5=\frac{15}{2}$

- **39.** 이차함수 $y = 2x^2 4x + 3$ 의 그래프에 대한 다음 설명 중 옳은 것은?
 - ① 꼭짓점의 좌표는 (2, 1) 이다.
 - ② 모든 x의 값에 대하여 y의 값의 범위는 $y \le 1$ 이다.
 - ③ y 축에 대칭인 그래프의 식은 $y = -x^2 4x + 5$ 이다.
 - ④x 가 증가할 때 y 가 감소하는 x 의 범위는 x < 1 이다.
 - ⑤ 함수의 그래프는 제1, 2, 3 사분면을 지난다.

$$y = 2x^2 - 4x + 3 = 2(x^2 - 2x + 1 - 1) + 3 = 2(x - 1)^2 + 1$$

- ① 꼭짓점은 (1, 1) 이다.
- ② 모든 x의 값에 대하여 y의 값의 범위는 $y \ge 1$ 이다.
- ③ y 축에 대칭인 그래프의 식은 x 대신 -x 를 대입하므로 y=
- $2x^2 + 4x + 3$ 이다.
- ④ 아래로 볼록이고 축의 식이 x = 1 이므로 x < 1 일 때, x 가 증가할 때 y 는 감소한다.
- ⑤ 아래로 볼록, 꼭짓점이 (1, 1), y 절편이 3 인 그래프를 그리면 제1. 2 사부면을 지난다.