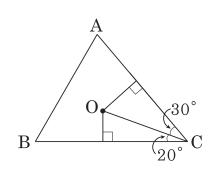

1. 폭이 일정한 종이테이프를 다음 그림과 같이 접었다. $\triangle ABC$ 는 어떤 삼각형인지 구하여라.


- 답:
- ▷ 정답: 이등변삼각형

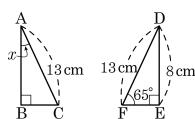
해설 종이를 접었으므로 ∠BAC = ∠DAC 이다. ∠DAC = ∠BCA (엇 각) 이다. 따라서 ∠BAC = ∠ACB 이므로 ΔABC 는 이등변삼각형이다. **2.** 다음 그림고 같이 △ABC에서 점 ○는 외심이다. ∠OAC = 35°, ∠OCB = 30°일 때, ∠x 의 값을 구하여라.

$$\angle OAC + \angle OCB + \angle x = 90^{\circ}$$

 $\therefore \angle x = 90^{\circ} - 35^{\circ} - 30^{\circ} = 25^{\circ}$

3. 다음 그림에서 점 O 가 \triangle ABC 의 외심일 때, ∠B 의 크기를 구하여라.

답:

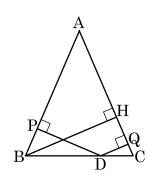

➢ 정답: 60 º

해설

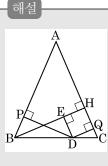
$$\overline{OB} = \overline{OC}$$
이므로 $\angle OBC = 20^{\circ}$ $\angle OAB + \angle OBC + \angle OCA = 90^{\circ}$ 에서 $\angle OAB = 90^{\circ} - (20^{\circ} + 30^{\circ}) = 40^{\circ}$ $\overline{OA} = \overline{OB}$ 이므로 $\angle OBA = 40^{\circ}$

$$\therefore \angle B = 40^{\circ} + 20^{\circ} = 60^{\circ}$$

4. 합동인 두 직각삼각형 ABC, DEF가 다음 그림과 같을 때, $\angle x$ 의 크기는?


 345°

4 35°


 25°

① 65°

△ABC, △DEF는 서로 합동이다. ∴ ∠x = ∠FDE = 180° - 90° - 65° = 25° 5. 다음 그림에서 $\triangle ABC$ 는 이등변삼각형이다. \overline{BC} 위의 한 점 D 에서 \overline{AB} , \overline{AC} 에 내린 수선의 발을 각각 P,Q 라 할 때, $\overline{DP}=7\mathrm{cm}$, $\overline{DQ}=3\mathrm{cm}$ 이다. 점 B 에서 \overline{AC} 에 내린 수선의 길이는?

① 7cm ② 8cm ③ 9cm ④ 10cm ⑤ 11cm

점 D 에서 \overline{BH} 에 내린 수선의 발을 E 라고 하면 $\Delta PBD \equiv \Delta EDB(RHA 합동)$

 $\therefore \overline{\rm BH} = \overline{\rm BE} + \overline{\rm EH} = \overline{\rm DP} + \overline{\rm DQ} = 7 + 3 = 10 ({\rm cm})$

것을 모두 고르면?

MOL
N
C

다음 그림과 같이 $\triangle ABC$ 의 두 변 \overline{AB} , \overline{BC} 의 수직이등분선이 만나는

점 O 에서 변 \overline{AC} 에 내린 수선을 \overline{OL} 이라 할 때 다음 보기 중 옳은

답: 답:

6.

답:

▷ 정답: ⑤

▷ 정답: □

▷ 정답: ②

해설 적 () 는 삼각형 ARC 의 외심이다

점 O 는 삼각형 ABC 의 외심이다. $\therefore \overline{AL} = \overline{CL} \cdots (\mathbb{Q})$

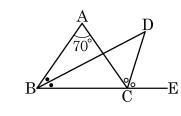
 $\triangle AOL \equiv \triangle COL \text{ (SAS 합동)} \cdots \text{ (②)}$ $\triangle AOM 과 \triangle BOM 에서 <math>\overline{OM}$ 은 공통,

 $\overline{\mathrm{AM}} = \overline{\mathrm{BM}}$, $\angle \mathrm{OMA} = \angle \mathrm{OMB} = 90^{\circ}$

 $\triangle AOM \equiv \triangle BOM$

 $\overline{\mathrm{OA}} = \overline{\mathrm{OB}}$

ΔOBN 과 ΔOCN 에서 ON 은 공통


 $\overline{BN} = \overline{CN}$ $\angle ONB = \angle ONC = 90^{\circ}$

 $\triangle OBN \equiv \triangle OCN$

 $\overline{\mathrm{OB}} = \overline{\mathrm{OC}}$

 $\therefore \overline{OA} = \overline{OB} = \overline{OC} \cdots (\overline{\bigcirc})$

7. $\triangle ABC$ 에서 $\overline{AB} = \overline{AC}$ 이고, $\angle C$ 의 외각의 이등분선과 $\angle B$ 의 이등분선의 교점을 D 라고 한다, $\angle A = 70^\circ$ 일 때, $\angle D$ 의 크기는?

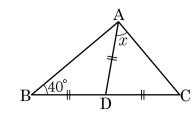
①
$$32.5^{\circ}$$
 ② 35° ③ 37.5° ④ 40° ⑤ 42.5°

$$\angle ABC = \angle ACB = \frac{1}{2}(180^{\circ} - 70^{\circ}) = 55^{\circ}$$

$$\angle ACD = \frac{1}{2}(\angle A + \angle ABC)$$

$$= \frac{1}{2}(70^{\circ} + 55^{\circ})$$

 $= 62.5^{\circ}$

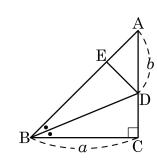

$$\angle DBC = \frac{1}{2}(\angle ABC) = \frac{1}{2} \times 55^{\circ} = 27.5^{\circ}$$

$$\therefore \angle D = 180^{\circ} - (27.5^{\circ} + 55^{\circ} + 62.5^{\circ})$$

$$= 180^{\circ} - 145^{\circ}$$

$$= 35^{\circ}$$

다음 그림에서 $\overline{AD} = \overline{BD} = \overline{CD}$ 이고 $B = 40^{\circ}$ 일 때, $\angle x$ 의 크기는?



4 55°

$$\angle ADC = 40^{\circ} + 40^{\circ} = 80^{\circ}$$

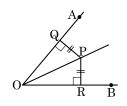
 $\therefore \angle x = \frac{1}{2}(180^{\circ} - 80^{\circ}) = 50^{\circ}$

9. $\angle C = 90^{\circ}$ 인 직각이등변삼각형 ABC 에서 $\angle B$ 의 이등분선이 \overline{AC} 와 만나는 점을 D, D 에서 \overline{AB} 에 내린 수선의 발을 E 라 할 때 $\overline{BC} = a$, $\overline{AD} = b$ 라 하면 \overline{AB} 의 길이를 a, b 로 나타내면?

(3) 2b - a

①
$$a-b$$
 ② $2a-b$ ② $a+b$ ③ $\frac{1}{2}a+b$

해설
$$\overline{AC} = \overline{BC} \text{ 이므로 } \overline{DC} = a - b$$


$$\Delta BCD \equiv \Delta BED \text{ (RHA합동)} \text{ 이고 } \Delta AED \text{ 가 직각이등변삼각형}$$
이므로,
$$\overline{DC} = \overline{DE} = \overline{AE}, \ \overline{BC} = \overline{BE}$$

$$\overline{AB} = \overline{BE} + \overline{EA} = a + a - b$$

$$\therefore \overline{AB} = 2a - b$$

=2a-b

10. 다음 그림의 ∠AOB 의 내부의 한 점 P 에서 두 변 OA , OB 에 내린 수선의 발을 각각 Q, R 이라고 하였을 때, QP = RP 이다. 다음 중 옳지 않은 것은?

$$\overline{\text{QO}} = \overline{\text{PO}}$$

$$\textcircled{4} \angle OPQ = \angle OPR$$

$$\bigcirc$$
 $\angle QOP = \angle ROP$

해설 각을 이루는 두 변에서 같은 거리에 있는 점은 그 각의 이등분선 위에 있다.

 $\overline{QP} = \overline{RP}$ 이므로 \overline{OP} 는 $\angle QOR$ 의 이등분선이다. 그러므로 $\overline{QO} \neq \overline{PO}$ 이다.