1. 다음 표를 보고 $\cos x = 0.6947$ 을 만족하는 x 에 대하여 $\tan x$ 의 값을 구하여라.

 \sin 각도 \cos tan 44° 0.6947 0.7193 0.9657 45° 0.7071 0.7071 1.0000 0.7193 0.6947 46° 1.0355 47° 0.7314 0.6820 1.0724

▷ 정답: 1.0355

▶ 답:

 $\cos 46^{\circ} = 0.6947$ $\therefore x = 46^{\circ}$

따라서 $\tan 46^\circ = 1.0355^\circ$ 이다.

- 다음의 삼각비 표와 그림을 참고할 때, (1) 과 (2)의 값을 바르게 연결한 것은?
 (1) sin x = 0.5736, cos 35° = y에서 x, y의 값
 - (2) 직각삼각형에서 z의 값

각도	sin	cos	tan
34°	0.5592	0.8290	0.6745
35°	0.5736	0.8192	0.7002
36°	0.5878	0.8090	0.7265

- ② (1) x = 36°, y = 0.8142 (2) 34.235
- ③ (1) $x = 36^{\circ}$, y = 0.872 (2) 36.215

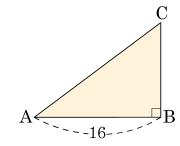
① (1) x = 34°, y = 0.8290 (2) 36.225

- 4 (1) x = 35°, y = 0.8192 (2) 40.45
- ③ (1) x = 36°, y = 0.802 (2) 36.95
- 해설

 $(2)\cos 36^{\circ} = \frac{z}{50} = 0.8090$

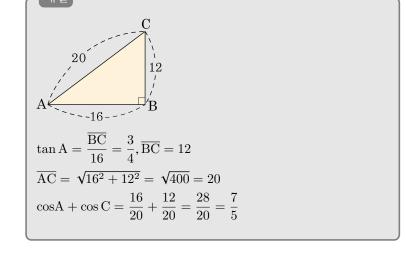
 $\therefore z = 50 \times 0.8090 = 40.45$

 $\tan A=1$ 일 때, $(2+\sin A)(2-\cos A)$ 의 값은? (단, $0^{\circ} \le A \le 90^{\circ})$ 3.

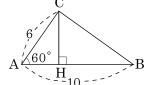

 $\bigcirc \frac{7}{2}$ ② $\frac{5}{2}$ ③ $\frac{3}{2}$ ④ $\frac{1}{2}$ ⑤ 0

 $\tan 45^{\circ} = 1$ 이므로 $\angle A = 45^{\circ}$ $(2 + \sin 45^{\circ})(2 - \cos 45^{\circ})$

$$= \left(2 + \frac{\sqrt{2}}{2}\right) \left(2 - \frac{\sqrt{2}}{2}\right)$$

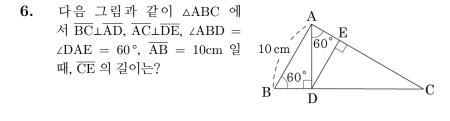

$$= \left(2 + \frac{\sqrt{2}}{2}\right) \left(2 - \frac{\sqrt{2}}{2}\right) = 4 - \frac{1}{2} = \frac{7}{2}$$

4. 다음 그림과 같이 $\angle B=90^\circ$ 인 직각삼각형 ABC 에서 $\overline{AB}=16,\ \tan A=\frac{3}{4}$ 일 때, $\cos A+\cos C$ 의 값을 구하여라.



답:

ightharpoonup 정답: $\frac{7}{5}$


5. 다음 그림에서 $\overline{AC}=6$, $\overline{AB}=10$, $\angle A=60$ °일 때, \overline{BC} 의 길이를 구하여라.

▶ 답:

ightharpoonup 정답: $2\sqrt{19}$

 $\sin 60^{\circ} = \frac{\overline{CH}}{6} = \frac{\sqrt{3}}{2}$ $\therefore \overline{CH} = 3\sqrt{3}$ $\cos 60^{\circ} = \frac{\overline{AH}}{6} = \frac{1}{2}$ $\therefore \overline{AH} = 3$ $\overline{HB} = 10 - 3 = 7$ $\therefore \overline{BC} = \sqrt{7^2 + (3\sqrt{3})^2} = \sqrt{49 + 27} = \sqrt{76} = 2\sqrt{19}$

- ① $4\sqrt{3}$ cm ② $5\sqrt{3}$ cm
 - ⑤ 5 cm

해설

 $\triangle ABD$ 에서 $\overline{AD} = \overline{AB} \cdot \sin 60^{\circ} = 10 \times \frac{\sqrt{3}}{2} = 5\sqrt{3}$ $\triangle ADE$ 에서 $\overline{DE} = \overline{AD} \cdot \sin 60^{\circ} = 5\sqrt{3} \times \frac{\sqrt{3}}{2} = \frac{15}{2}$ $\triangle DCE$ 에서 $\overline{CE} = \frac{\overline{DE}}{\tan 30^{\circ}} = \frac{15}{2} \times \sqrt{3} = \frac{15\sqrt{3}}{2} \text{(cm)}$