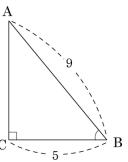
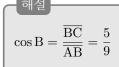

1. 다음 그림을 보고, sin A, cos A, tan A 의 값을 각각 바르게 구한 것은?

①
$$\sin A = \frac{a}{b}$$
, $\cos A = \frac{b}{c}$, $\tan A = \frac{a}{c}$

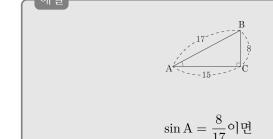
②
$$\sin A = \frac{b}{c}$$
, $\cos A = \frac{a}{c}$, $\tan A = \frac{a}{b}$

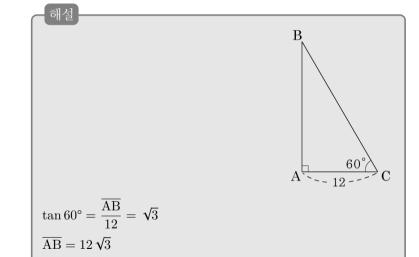

$$\sin \mathbf{A} = \frac{높이}{\cancel{!}\cancel{!}\cancel{!}} = \frac{a}{c} \;, \; \cos \mathbf{A} = \frac{\cancel{!}\cancel{!}\cancel{!}}{\cancel{!}\cancel{!}\cancel{!}} = \frac{b}{c} \;, \; \tan \mathbf{A} = \frac{\cancel{!}\cancel{!}\cancel{!}}{\cancel{!}\cancel{!}\cancel{!}} = \frac{a}{b}$$


다음과 같이 ∠C가 90°인 직각삼각형ΔABC에서 cos B의 값은 ?

- C
 - $\frac{5}{2}$

 $3\frac{5}{8}$




3.
$$\sin A = \frac{8}{17}$$
 일 때, $\cos A \tan A$ 의 값을 구하여라.

① $\frac{8}{15}$ ② $\frac{8}{17}$ ③ $\frac{15}{17}$ ④ $\frac{7}{19}$ ⑤ $\frac{9}{17}$

 $\cos A = \frac{15}{17}$, $\tan A = \frac{8}{15}$ $\therefore \cos A \times \tan A = \frac{15}{17} \times \frac{8}{15} = \frac{8}{17}$

선분은?

5.

다음 그림과 같이 반지름의 길이가 1 인 사분원에서 $\tan x$ 를 나타내는

$$\tan x = \frac{\overline{AB}}{\overline{OB}} = \frac{\overline{CD}}{\overline{OD}} = \overline{CD}$$

6. $0^{\circ} \le x \le 90^{\circ}$ 일 때, 다음 중 옳은 것은?

- (3) $0 < \tan x < 1$ (4) $-2 < \sin x < -1$

$$0^{\circ} \le x \le 90^{\circ}$$
 일 때 $0 \le \sin x \le 1$, $0 \le \cos x \le 1$, $\tan x \ge 0$

$$AB = \frac{17}{\overline{AC}}$$

$$\cos A = \frac{\overline{AC}}{\overline{AB}} = \frac{15}{17}$$

$$\therefore \sin A + \cos A = \frac{23}{17}$$

8. 다음 표를 보고 $\cos x = 0.7193$ 을 만족하는 x 에 대하여 $\tan x$ 의 값은?

각도	sin	cos	tan
44°	0.6947	0.7193	0.9657
45°	0.7071	0.7071	1.0000
46°	0.7193	0.6947	1.0355
47°	0.7314	0.6820	1.0724

0.9657

2 1.0000

③ 1.0355

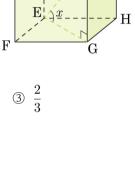
4 1.0724

⑤ 1.9657

해설

 $\cos 44^{\circ} = 0.7193$

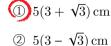
 $\therefore x = 44^{\circ}$


따라서 $\tan 44^{\circ} = 0.9657$ 이다.

9.

체이다. $\angle CEG = x$ 일 때, $\sin x + \cos x$ 의 값을 구하면?

다음 그림은 한 변의 길이가 2 인 정육면

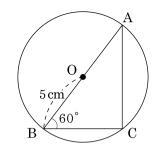

$$\bigcirc \sqrt[3]{3} + \bigcirc$$

$$\overline{\text{CE}} = 2\sqrt{3}$$

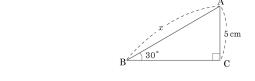
 $\overline{\text{EG}} = 2\sqrt{2}$
 $\overline{\text{CG}} = 2$ 이므로

$$\overline{\text{CG}} = 2$$
 이므로
$$\sin x + \cos x = \frac{2}{2\sqrt{3}} + \frac{2\sqrt{2}}{2\sqrt{3}} = \frac{\sqrt{3} + \sqrt{6}}{3} \text{ 이다.}$$

10. 다음 그림에서 $\overline{BO} = 5\,\mathrm{cm}$, $\angle B = 60^\circ$ 일 때, 직각삼각형 ABC 의 둘레의 길이는?


- $3 \ 5(3 + \sqrt{2}) \text{ cm}$
- $4 5(2\sqrt{3}-1) \text{ cm}$
 - ⑤ $5(3+2\sqrt{3})$ cm

 $\overline{AB} = 10 \,\mathrm{cm}$


$$\overline{\mathrm{AC}} = \sin 60^{\circ} \times 10 = 5\sqrt{3} (\mathrm{\,cm})$$

BC = cos 60° × 10 = 5(cm) ∴ (직각삼각형 ABC 의 둘레의 길이)

$$= \overline{AB} + \overline{AC} + \overline{BC} = 10 + 5\sqrt{3} + 5$$
$$= 5\sqrt{3} + 15 = 5(\sqrt{3} + 3) \text{ cm}$$

11. 다음 그림과 같은 직각삼각형 ABC 에서 $\overline{AC}=5 \mathrm{cm}$ 일 때, \overline{AB} 의 길이는?

②
$$10 \text{cm}$$
 ③ $(5 + \sqrt{3}) \text{cm}$

$$3 5\sqrt{3}$$
cm

$$x \sin 30^{\circ} = 5$$
 이므로
 $x = \frac{5}{\sin 30^{\circ}} = 5 \times 2 = 10 \text{(cm)}$

12. 다음 그림과 같이 $\angle B = 60^\circ$, $\angle C = 45^\circ$ 인 $\triangle ABC$ 에서 $\overline{AH} \perp \overline{BC}$ 이고, $\overline{AB} = 8$ cm 일 때, \overline{AC} 의 길이는?

②
$$4\sqrt{3}$$
cm

$$\bigcirc$$
 8 $\sqrt{6}$ cm

 $4\sqrt{6}$ cm

하철
$$\triangle ABH$$
 에서 $\sin 60^\circ = \frac{\overline{AH}}{\overline{AB}} = \frac{\overline{AH}}{8} = \frac{\sqrt{3}}{2}, \overline{AH} = 4\sqrt{3} \text{ (cm)}$ 이므로 $\triangle AHC$ 에서 $\sin 45^\circ = \frac{\overline{AH}}{\overline{AC}} = \frac{4\sqrt{3}}{x} = \frac{\sqrt{2}}{2}, x = 4\sqrt{6} \text{ (cm)}$ 이다.

13. 직선 $y = \frac{2}{5}x - 1$ 이 x 축의 양의 방향과 이루는 예각의 크기를 A 라고할 때, 다음 중 옳은 것은 ?

$$\frac{1}{\sqrt{5}}$$
 ② $\cos A = \frac{2}{\sqrt{5}}$
2 ④ $\sin A \cdot \cos A = \frac{2}{5}$

$$3 \tan A = 2$$

$$3 \tan A = \frac{2}{5}$$

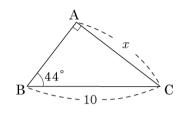
주어진 직선의 기울기는
$$\frac{2}{5}$$
 이므로 다음 그림과 같이 표현할 수 있다.

 $\tan A = \frac{2}{5}$, $\cos A = \frac{5}{\sqrt{29}}$, $\sin A = \frac{2}{\sqrt{29}}$

14. 다음 삼각비의 값 중 가장 작은 값은?

 \bigcirc $\sin 25^{\circ}$

② cos 0°


③ cos 10°

(4) tan 45°

 $\Im \tan 60^{\circ}$

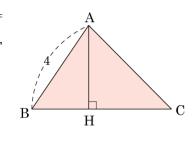
- ① sin 25° 와 ③ cos 10°
- $0^{\circ} \le x < 45^{\circ}$ 일 때, $\sin x < \cos x$ 따라서 $\sin 25^{\circ} < \cos 10^{\circ} < 1$
- $20 \cos 0^{\circ} = 1$
- $4 \tan 45^{\circ} = 1$
- ⑤ tan 60° = √3 따라서 가장 작은 값은 ① sin 25°

15. 다음 삼각비의 표를 보고 \triangle ABC 에서 x 의 값을 구하면?

각도	sin	cos	tan
44	0.6947	0.7193	0.9657
45	0.7071	0.7071	1.0000
46	0.7193	0.6947	1.0355

 $\bigcirc 1.022$

 $\bigcirc{6.947}$

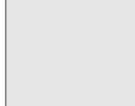

③ 7.071

⑤ 10.355

해설

 $x = 10 \times \sin 44^\circ = 10 \times 0.6947 = 6.947$

. 다음 그림과 같은 $\triangle ABC$ 에서 $\overline{AB}=4$, $\sin B=\frac{\sqrt{3}}{2}$, $\sin C=\frac{\sqrt{3}}{3}$ 일 때, \overline{HC} 의 길이를 제곱한 값은?

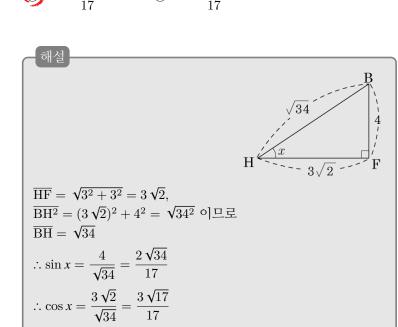

① 6

해설

(

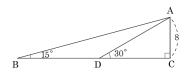
③ 12

4 18


$$\mathrm{B}^{2}$$
 대 H C $\mathrm{Sin}\,\mathrm{B}=\frac{\overline{\mathrm{AH}}}{\overline{\mathrm{AB}}}=\frac{\sqrt{3}}{2}$ 이므로 $\frac{\overline{\mathrm{AH}}}{4}=\frac{\sqrt{3}}{2}$ 이다.

$$\therefore \overline{AH} = 2\sqrt{3}, \ \overline{BH} = \sqrt{4^2 - (2\sqrt{3})^2} = 2$$
$$\sin C = \frac{\overline{AH}}{\overline{AC}} = \frac{\sqrt{3}}{3} \ \circ | \square \pm \frac{2\sqrt{3}}{\overline{AC}} = \frac{\sqrt{3}}{3} \ \circ | \ \text{다}.$$

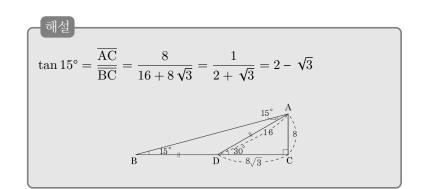
$$\therefore \overline{AC} = 6, \ \overline{HC} = \sqrt{6^2 - (2\sqrt{3})^2} = 2\sqrt{6}$$


$$\therefore \ \overline{\mathrm{HC}}^2 = 24$$

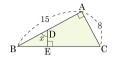
17. 다음 그림과 같은 직육면체에서 대각선 HB 와 밑면의 대각선 HF 가 이루는 ∠BHF의 크기를 x 라 할 때, sin x + cos x 의 값은? A H → x → 7 → G E ← F

 $\sin x + \cos x = \frac{2\sqrt{34}}{17} + \frac{3\sqrt{17}}{17} = \frac{2\sqrt{34} + 3\sqrt{17}}{17}$

18. 다음 그림을 이용하여 tan 15°의 값을 구하면?

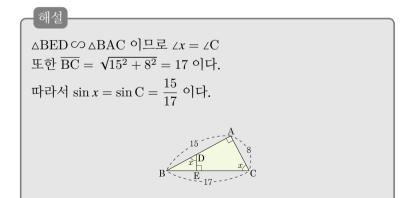

①
$$2 - \sqrt{2}$$

②
$$2 + \sqrt{2}$$


$$3 2 + \sqrt{3}$$

$$\bigcirc 2 - \sqrt{3}$$

$$\bigcirc 2 + 2\sqrt{3}$$



19. 다음 그림의 \triangle ABC 에서 $\sin x$ 의 값은?

- ① $\frac{7}{17}$
- $2 \frac{8}{17}$
- $3 \frac{8}{15}$
- $\frac{15}{17}$

 $\frac{15}{8}$

20. 다음 중 옳은 것은?

①
$$\sin 30^{\circ} - \sin 60^{\circ} = \frac{\sqrt{2} - \sqrt{3}}{2}$$

- $2 \cos 30^{\circ} \times \tan 30^{\circ} + \sin 60^{\circ} \times \tan 30^{\circ} = 2$
- $\Im \frac{\cos 60^{\circ}}{\sin 30^{\circ}} = \sqrt{3}$
- $4\cos 45^\circ + \sin 45^\circ = \sqrt{2}$

- $(1) \sin 30^{\circ} \sin 60^{\circ} = \frac{1 \sqrt{3}}{2}$
- $\label{eq:cos30} \text{(2)} \cos 30^\circ \times \tan 30^\circ + \sin 60^\circ \times \tan 30^\circ = 1$