
다음 그림과 같은 직각삼각형 ABC 에서 
$$\sin A = \frac{2}{3}$$
 이고,  $\overline{BC}$  가  $4 \text{cm}$  일 때,  $\overline{AB}$  의 길이는?

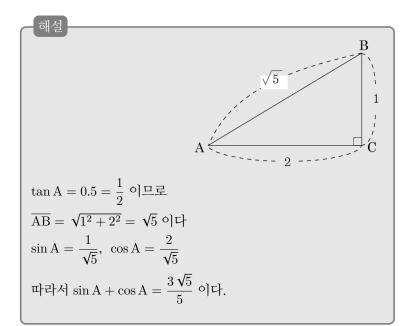


(3)  $2\sqrt{7}$  cm

$$2 4\sqrt{5} \,\mathrm{cm}$$

$$\bigcirc 4\sqrt{3}\,\mathrm{cm}$$

sin A = 
$$\frac{\overline{BC}}{\overline{AC}}$$
 =  $\Rightarrow \overline{AC} = 6$ cm

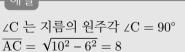

2√5 cm 이다.

$$\sin A = \frac{\overline{BC}}{\overline{AC}} = \frac{2}{3}$$
 이므로  $4 = \overline{AC} \times \frac{2}{3}$  이다.

$$ightarrow$$
  $ightarrow$   $i$ 

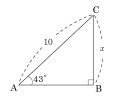
2.  $\tan A = 0.5$  일 때,  $\sin A + \cos A$  의 값은?(단, 0° < A < 90°)


① 
$$\frac{\sqrt{5}}{5}$$
 ②  $\frac{2\sqrt{5}}{5}$  ③  $\frac{3\sqrt{5}}{5}$  ④  $\frac{4\sqrt{5}}{5}$  ⑤  $\sqrt{5}$ 




6. 다음 그림에서 원 O 의 반지름의 길이가 5, 
$$\overline{BC} = 6$$
 일 때,  $\cos A$  의 값을 구하면?

- $\frac{4}{5}$
- (2
- .


5 O'/





$$\therefore \cos A = \frac{\overline{AC}}{\overline{AB}} = \frac{8}{10} = \frac{4}{5}$$

다음 그림의  $\triangle ABC$  에서 삼각비의 표를 보고 x 의 값을 구하면?



〈삼각비의 표〉

| x   | sin x  | cos x  | tan x  |
|-----|--------|--------|--------|
| 43° | 0.6820 | 0.7314 | 0.9325 |
| 44° | 0.6947 | 0.7193 | 0.9657 |
| 45° | 0.7071 | 0.7071 | 1.0000 |
| 46° | 0.7193 | 0.6947 | 1.0355 |
| 47° | 0.7314 | 0.6821 | 1.0724 |

- 6.82
- ② 6.947 ③ 7.071 ④ 7.193 ⑤ 7.314

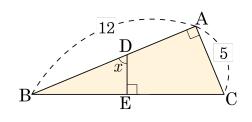
해설

$$\sin 43^\circ = \frac{x}{10}$$
 이므로  $x = 10 \times \sin 43^\circ = 10 \times 0.682 = 6.82$  ::

6.82

5. 다음 그림과 같은 직각삼각형 ABC 에서 
$$\overline{AB}$$
 :  $\overline{BC}$  = 2 : 1 일 때,  $\sin A \times \cos C$  의 값은?

$$\frac{2}{\sqrt{5}}$$






 $\overline{AB} = 2$ ,  $\overline{BC} = 1$  이라 하면  $\overline{AC} = \sqrt{5}$  이다. 따라서  $\sin A \times \cos C = \frac{1}{\sqrt{5}} \times \frac{1}{\sqrt{5}} = \frac{1}{5}$  이다.

해설 
$$\overline{AB}=2, \ \overline{BC}=1 \ \text{이라 하면 } \overline{AC}=\sqrt{5} \ \text{이다}.$$
 따라서  $\sin A \times \cos C=\frac{1}{\sqrt{5}}\times\frac{1}{\sqrt{5}}=\frac{1}{5} \ \text{이다}.$ 

6. 다음 그림과 같은  $\triangle ABC$  에서  $\sin x \times \cos x \times \tan x$  의 값을 구하여라.



▶ 답:

ightharpoonup 정답:  $\frac{144}{169}$ 

$$\therefore \angle C = x$$

$$\overline{BC} = \sqrt{12^2 + 5^2} = \sqrt{169} = 13$$

$$\sin x = \frac{\overline{AB}}{\overline{AB}} = \frac{12}{12}$$

$$\frac{\overline{\overline{BC}}}{\overline{\overline{BC}}} - \frac{\overline{\overline{13}}}{\overline{13}}$$

$$\cos x = \frac{\overline{\overline{BC}}}{\overline{\overline{BC}}} = \frac{5}{13}$$

$$\tan x = \frac{\overline{\overline{AB}}}{\overline{\overline{AC}}} = \frac{12}{5}$$

 $\therefore \sin x \times \cos x \times \tan x = \frac{144}{169}$ 

'.  $(\sin 0^\circ + 3\cos 0^\circ) \times (\cos 90^\circ - 2\sin 90^\circ)$  의 값을 A,  $\tan 45^\circ \times \cos 0^\circ + \sin 90^\circ$  의 값을 B 라 할 때, A ÷ B 의 값은?

$$A = (0+3\times1)\times(0-2\times1) = 3\times(-2) = -6$$
,  $B = 1\times1+1=2$ 이므로  $A \div B = (-6) \div 2 = -3$ 

8.  $\sin 3x = \cos 45^{\circ}$  일 때, x 의 값은? (단,  $0^{\circ} < x < 90^{\circ}$ )

$$\sin 3x = \frac{\sqrt{2}}{2}$$
이므로  $3x = 45^{\circ}$   
∴  $x = 15^{\circ}$ 

9.  $0^{\circ} < A < 45^{\circ}$  일 때,  $\sqrt{(\sin A - \cos A)^2} - \sqrt{(\sin A + \cos A)^2}$  을 간단히 하면?

① 
$$-2\cos A$$
 ②  $-2\sin A$  ③ 0 ④  $2\sin A$ 

 $(3) 2(\sin A + \cos A)$ 

해설
$$0^{\circ} < A < 45^{\circ} \text{ 인 범위에서는 } \sin A < \cos A \text{ 이므로 } \sin A - \cos A < 0$$

$$\sqrt{(\sin A - \cos A)^{2}} - \sqrt{(\sin A + \cos A)^{2}}$$

$$= -(\sin A - \cos A) - (\sin A + \cos A)$$

$$= -\sin A + \cos A - \sin A - \cos A$$

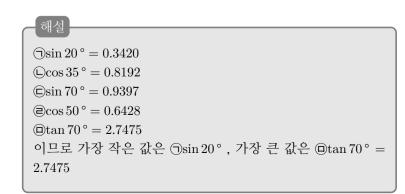
$$= -\sin A - \sin A$$

$$= -2\sin A$$

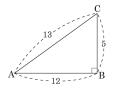
10. 삼각비의 표를 보고, 보기에서 가장 작은 값과 가장 큰 값을 차례대로 짝지은 것을 구하여라.

| 각도           | sin    | cos    | tan     |
|--------------|--------|--------|---------|
| 10°          | 0.1736 | 0.9848 | 0.1763  |
| $20^{\circ}$ | 0.3420 | 0.9397 | 0.3640  |
| 35°          | 0.5736 | 0.8192 | 0.7002  |
| 45°          | 0.7071 | 0.7071 | 1.0000  |
| 50°          | 0.7660 | 0.6428 | 1.1918  |
| 70°          | 0.9397 | 0.3420 | 2.7475  |
| 89°          | 0.9998 | 0.0175 | 57.2900 |




© sin 70°

□ cos 35 °

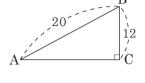

□ tan 70°

(¬) sin 20°

② cos 50°



11. 다음 그림의 직각삼각형에 대하여 옳은 것을 보기에서 고르시오

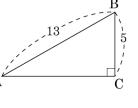



 $\bigcirc$   $\sin A = \cos A$ 

 $\bigcirc$   $\tan C = \frac{1}{\tan A}$ 

▷ 정답: ②

$$\tan C = \frac{12}{5}$$
,  $\tan A = \frac{5}{12}$  이므로  $\tan C = \frac{1}{\tan A}$  이다.



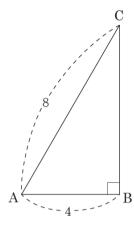

$$ightharpoonup$$
 정답:  $-\frac{1}{5}$ 

$$\overline{AC} = \sqrt{20^2 - 12^2} = \sqrt{256} = 16$$

$$\sin A - \cos A = \frac{12}{20} - \frac{16}{20} = -\frac{4}{20} = -\frac{1}{5}$$

**13.** 다음 그림과 같은 직각삼각형 ABC에서 cos A + sin A 의 값을 구하여라.






$$ightharpoonup$$
 정답:  $rac{17}{13}$ 

$$\overrightarrow{AC} = \sqrt{13^2 - 5^2} = \sqrt{144} = 12$$

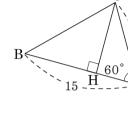
$$\cos A + \sin A = \frac{12}{13} + \frac{5}{13} = \frac{17}{13}$$

**14.** 다음 그림에서 tan A sin A 의 값을 구하여 라.



$$ightharpoonup$$
 정답:  $\frac{3}{2}$ 

$$\overline{BC} = \sqrt{8^2 - 4^2} = \sqrt{64 - 16} = \sqrt{48} = 4\sqrt{3}$$
$$\tan A \sin A = \frac{4\sqrt{3}}{4} \times \frac{4\sqrt{3}}{8} = \sqrt{3} \times \frac{\sqrt{3}}{2} = \frac{3}{2}$$


**15.** 
$$\sin \frac{x}{2} = \cos 60^\circ$$
 일 때,  $x$  의 값을 구하여라. (단,  $0^\circ < x < 90^\circ$ )

$$\sin \frac{x}{2} = \frac{1}{2}$$
이므로  $\frac{x}{2} = 30^{\circ}$   
∴  $x = 60^{\circ}$ 

① 
$$\sqrt{21}$$
 ②  $2\sqrt{21}$ 

$$4 \sqrt{21}$$
  $5 \sqrt{21}$ 

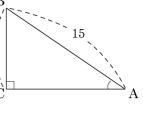
 $3 \sqrt{21}$ 

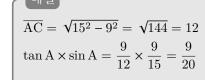


$$\sin 60^{\circ} = \frac{\overline{CH}}{12} = \frac{\sqrt{3}}{2}$$

$$\therefore \overline{CH} = 6\sqrt{3}$$

$$\cos 60^{\circ} = \frac{\overline{AH}}{12} = \frac{1}{2}$$


$$= \frac{\overline{AH}}{12} =$$


$$\therefore \overline{AH} = 6$$

$$\overline{HB} = 15 - 6 = 9$$

$$\therefore \overline{BC} = \sqrt{9^2 + (6\sqrt{3})^2} \\
= \sqrt{81 + 108} = \sqrt{189} \\
= 3\sqrt{21}$$

① 
$$\frac{1}{20}$$
 ②  $\frac{5}{20}$ 





18.  $\cos^2 60 \, ^{\circ} \times \tan 45 \, ^{\circ} - \sin^2 60 \, ^{\circ} \times \cos 45 \, ^{\circ}$ 의 값은?

① 
$$\frac{1-2\sqrt{2}}{8}$$
 ②  $\frac{1-3\sqrt{2}}{8}$  ④  $\frac{3-2\sqrt{2}}{9}$  ⑤  $\frac{4-3\sqrt{2}}{9}$ 

$$3 \frac{2-3\sqrt{2}}{8}$$

$$\cos^{2} 60^{\circ} \times \tan 45^{\circ} - \sin^{2} 60^{\circ} \times \cos 45^{\circ}$$

$$= \left(\frac{1}{2}\right)^{2} \times 1 - \left(\frac{\sqrt{3}}{2}\right)^{2} \times \frac{\sqrt{2}}{2}$$

$$= \frac{1}{4} - \frac{3\sqrt{2}}{8} = \frac{2 - 3\sqrt{2}}{8}$$