1. 다음 식에 대한 설명으로 옳지 <u>않은</u> 것을 고르면?

$$-2ax^2y^2 + xy - 3$$

- ① 항이 모두 3개로 이루어진 식이다.
- ② x 에 대한 내림차순으로 정리된 식이다.③ y 에 대한 내림차순으로 정리된 식이다.
- ⑤ xy 의 계수는 1이다.

④ x 에 관한 2차식이다.

2. 두 다항식 A, B에 대하여 $A + 3B = 2x^2 - 7x - 1$, $B - A = 2x^2 - 5x - 7$ 일 때, A + B는?

① -x+3 ② x-3 ③ x^2+x+3

$$A = -x^{2} + 2x + 5, B = x^{2} - 3x - 2$$

$$A + B = (-x^{2} + 2x + 5) + (x^{2} - 3x - 2) = -x + 3$$

$$\begin{cases} A + 3B = 2x^2 - 7x - 1 \\ B - A = 2x^2 - 5x - 7 \end{cases}$$

3. 다항식 $(x^2+1)^4(x^3+1)^3$ 의 차수는?

① 5차 ② 7차 ③ 12차 ④ 17차 ⑤ 72차

 $(x^2+1)^4$ 는 8차식, $(x^3+1)^3$ 은 9차식 따라서 $(x^2+1)^4(x^3+1)^3$ 은 8+9=17차 다항식이다.

다음 중 $(x-y)^2(x+y)^2$ 을 전개한 식은? 4.

①
$$x^4 - y^4$$

$$2 x^2 - y^2$$

$$3x^4 - 2x^2y^2 + y^4$$

$$x^4 - 4x^2y^2 + y^4$$

$$4 x^4 - x^2 y^2 + y^4$$

$$(x-y)^{2}(x+y)^{2} = \{(x-y)(x+y)\}^{2}$$
$$= (x^{2}-y^{2})^{2}$$
$$= x^{4} - 2x^{2}y^{2} + y^{4}$$

$$\equiv x^2 - 2x^2y^2 + y$$

5. 다항식 $(x^2 + 2x - 3)(3x^2 + x + k)$ 의 전개식에서 일차항의 계수가 15일 때, 상수 k의 값은?

① -3 ② 0 ③ 3 ④ 6

⑤9

해설

상수항과 일차항만의 곱을 구하면, -3x + 2kx = 15x

 $\therefore k = 9$

- 다항식 $(5x^2 + 3x + 1)^2$ 을 전개하였을 때, x^2 의 계수는? 6.
 - ① 10 ② 13 ③ 16 ⑤ 25

 $(5x^2 + 3x + 1)(5x^2 + 3x + 1)$ i) (일차항)x(일차항)의 경우 9x²

- ii) (이차항)×(상수항)의 경우 2×5x²
- $\stackrel{\mathbf{Z}}{\neg}$, $5x^2 + 5x^2 + 9x^2 = 19x^2$
- ∴ 19

- 7. 다항식 $2x^3 + x^2 + 3x = x^2 + 1$ 로 나눈 나머지는?

- ① x-1 ② x ③ 1 ④ x+3 ⑤ 3x-1

직접 나누어보면

 $(2x+1) + \frac{x-1}{x^2+1}$

몫 : 2x + 1, 나머지 : x - 1

다항식 f(x)를 $2x^2 + 3x + 2$ 로 나누었더니 몫이 3x - 4이고, 나머지가 8. 2x + 5이었다. 이 때, f(1)의 값은?

②0 3 1 4 3 5 5 ① -1

해설

$$f(x) = (2x^2 + 3x + 2)(3x - 4) + (2x + 5)$$

= $6x^3 + 9x^2 + 6x - 8x^2 - 12x - 8 + 2x + 5$
= $6x^3 + x^2 - 4x - 3$

$$= 6x^{3} + 9x^{2} + 6x - 8x^{2} - 12x - 8 + 2x + 5$$
$$= 6x^{3} + x^{2} - 4x - 3$$

$$f(1) = 6 + 1 - 4 - 3 = 0$$

$$f(x) = (2x^2 + 3x + 2)(3x - 4) + (2x + 5)$$

$$f(1) = (2 + 3 + 2)(3 - 4) + (2 + 5) = -7 + 7 = 0$$

- 다음 그림의 직사각형에서 색칠한 부분의 넓 9. 이를 나타내는 식을 세워 전개하였을 때, y^2 항의 계수는?
 - -x+y-3y
- ① -2 ② -1 ③ 0
- **4**1
- ⑤ 2

해설

(x + 4y)(3x) - (x + y)(x - y)= $3x^2 + 12xy - x^2 + y^2$ = $2x^2 + 12xy + y^2$

10. 다음 곱셈공식을 전개한 것 중 바른 것은?

- ① $(x-y-1)^2 = x^2 + y^2 + 1 2xy 2x 2y$ $(a+b)^2(a-b)^2 = a^4 - 2a^2b^2 + b^4$
- $(-x+3)^3 = x^3 9x^2 + 27x 27$
- $(p-1)(p^2+1)(p^4+1) = p^{16}-1$
- 해설

- ① $(x-y-1)^2 = x^2 + y^2 + 1 2xy 2x + 2y$ ③ $(-x+3)^3 = -x^3 + 9x^2 27x + 27$
- $(a-b)(a^2+ab+b^2) = a^3-b^3$ $(5)(p-1)(p+1)(p^2+1)(p^4+1) = p^8-1$

- $11. (x+y)^n$ 을 전개할 때 항의 개수는 n+1개이다. 다항식 $\{(2a-3b)^3(2a+1)\}$ $(3b)^3$] 4 을 전개할 때, 항의 개수를 구하면 ?
 - ④13개 ① 7개 ② 8개 ③ 12개 ⑤ 64개

 $\{(2a-3b)^3(2a+3b)^3\}^4$ $= \{(4a^2 - 9b^2)^3\}^4$ $= (4a^2 - 9b^2)^{12}$ $\therefore (4a^2 - 9b^2)^{12} 의 항의 개수는 13 개이다.$

12. 세 다항식 $A = x^2 + 3x - 2$, $B = 3x^2 - 2x + 1$, $C = 4x^2 + 2x - 3$ 에 $3A - \{5A - (3B - 4C)\} + 2B$ 를 간단히 하면?

- ① $3x^2 + 12x 13$
- $2 -3x^2 + 24x + 21$
- $3x^2 12x + 21$ $3 x^2 + 12x + 11$
- $\bigcirc -3x^2 24x + 21$

 $3A - \{5A - (3B - 4C)\} + 2B$

= -2A + 5B - 4C= -2(x² + 3x - 2) + 5(3x² - 2x + 1) - 4(4x² + 2x - 3)

 $= -3x^2 - 24x + 21$

- 13. 다항식 f(x)를 다항식 g(x)로 나눈 나머지를 r(x)라 할 때, f(x) g(x) - 2r(x)를 g(x)로 나눈 나머지는?
 - ① -2r(x) \bigcirc r(x)
- \bigcirc -r(x) $\Im 2r(x)$
- 3 0

f(x)를 g(x)로 나눈 몫을 Q(x)라 하면

f(x) = g(x)Q(x) + r(x) $\therefore f(x) - g(x) - 2r(x)$

- = g(x)Q(x) + r(x) g(x) 2r(x)
- $= g(x) \left\{ Q(x) 1 \right\} r(x)$ 여기서 g(x)의 차수는 -r(x)의 차수보다 높으므로 구하는 나머
- 지는 -r(x)이다.

- **14.** x 에 대한 다항식 $x^3 + ax^2 + bx + 2 를 x^2 x + 1$ 로 나눈 나머지가 x+3 이 되도록 a, b 의 값을 정할 때, ab 값을 구하여라.

▶ 답: **> 정답:** ab = -6

검산식을 사용

해설

 $x^3 + ax^2 + bx + 2 = (x^2 - x + 1) \cdot A + (x + 3)$ A = (x + p)

 $x^{3} + ax^{2} + bx + 2 - (x+3) = (x^{2} - x + 1)(x+p)$ $x^{3} + ax^{2} + (b-1)x - 1 = (x^{2} - x + 1)(x-1) \therefore p = -1$

우변을 정리하면

 $\therefore a = -2, b = 3$

 $\therefore ab = -6$

- **15.** 다항식 f(x) 를 $x + \frac{1}{3}$ 으로 나누었을 때, 몫과 나머지를 Q(x), R 라고 한다. 이 때, f(x) 를 3x + 1 으로 나눈 몫과 나머지를 구하면?

- ① Q(x), R ② 3Q(x), 3R ③ 3Q(x), R ④ $\frac{1}{3}Q(x)$, R

해설
$$f(x) = Q(x)\left(x + \frac{1}{3}\right) + R = \frac{1}{3}Q(x)(3x+1) + R$$

16. 다음 식을 전개한 것 중 옳은 것을 고르면?

①
$$(x-y-z)^2 = x^2 - y^2 - z^2 - 2xy + 2yz - 2zx$$

$$(3x - 2y)^3 = 27x^3 - 54x^2y + 18xy^2 - 8y^3$$

$$(x+y)(x-y)(x^2 + xy - y^2)(x^2 - xy + y^2) = x^9 - y^9$$

$$(x^2 - 2xy + 2y^2)(x^2 + 2xy + 2y^2) = x^4 + 4y^4$$

$$(x + y - 1)(x^2 + y^2 - xy + 2x + 2y + 1) = x^3 + y^3 - 3xy - 1$$

① $(x-y-z)^2 = x^2 + y^2 + z^2 - 2xy + 2yz - 2zx$

②
$$(3x-2y)^3 = 27x^3 - 54x^2y + 36xy^2 - 8y^3$$

③ $(x+y)(x-y)(x^2+xy+y^2)(x^2-xy+y^2)$

$$(3) (x+y)(x-y)(x^2 + xy + y^2)(x^2 - xy + y^2)$$

$$= x^6 - y^6$$

$$(3) (x+y-1)(x^2+y^2-xy+x+y+1)$$

$$= x^3+y^3-3xy-1$$

- 17. 두 다항식 $(1+2x+3x^2+4x^3)^3$, $(1+2x+3x^2+4x^3+5x^4)^3$ 의 x^3 의 계수를 각각 a, b라 할 때, a-b의 값을 구하면?
 - ① -21 ② -15 ③ -5 ④ -1 ⑤ 0

해설 $(1+2x+3x^2+4x^3+5x^4)^3$ 의 전개식에서

 x^4 항의 계수는 x^3 의 계수와는 관계가 없다. 따라서 $(1+2x+3x^2+4x^3)^3$ 의 전개식에서 x^3 의 계수와 (1+ $2x + 3x^2 + 4x^3 + 5x^4$)³ 의 전개식에서 x^3 의 계수는 같다. $\therefore a = b \quad \therefore a - b = 0$

18. 모든 모서리의 합이 36, 겉넓이가 56인 직육면체의 대각선의 길이는?

1)5 ② 6 ③ 7 ④ 8 ⑤ 9

직육면체의 가로, 세로, 높이를 각각 a, b, c라 하자. $4(a+b+c) = 36, \ 2(ab+bc+ca) = 56$ $(a+b+c)^2 = a^2 + b^2 + c^2 + 2(ab+bc+ca)$

 $a^2 + b^2 + c^2 = 81 - 56 = 25$

 \therefore (대각선의 길이) = $\sqrt{a^2 + b^2 + c^2}$

해설

 $= \sqrt{25} = 5$

19.
$$a^2 - b^2 = 2$$
일 때, $\{(a+b)^n + (a-b)^n\}^2 - \{(a+b)^n - (a-b)^n\}^2$ 의 값은?

① 2^n ② 2^{n+1} ③ 2^{n+2} ④ 2^{n+3} ⑤ 2^{n+4}

$$(a+b)^{n} = A, (a-b)^{n} = B$$

$$(\stackrel{<}{\sim} A) = (A^{2} + 2AB + B^{2}) - (A^{2} - 2AB + B^{2})$$

$$= 4AB$$

$$= 4\{(a+b)(a-b)\}^{n}$$

$$= 4 \times 2^{n}$$

$$= 2^{n+2}$$

20. 2¹⁶ – 1은 1과 10사이의 어떤 두 수로 나누어떨어진다. 이 때, 이 두 수의 합은?

① 4 ② 6 ③ 8 ④ 10 ⑤ 12

해설

 $a^2 - b^2 = (a + b)(a - b)$ 임을 이용하여 $2^{16} - 1$ 을 인수분해하면 $2^{16} - 1 = (2^8)^2 - 1^2$ = $(2^8 + 1)(2^8 - 1)$ = $(2^8 + 1)(2^4 + 1)(2^4 - 1)$ = $(2^8 + 1)(2^4 + 1)(2^2 + 1)(2^2 - 1)$ = $(2^8 + 1)(2^4 + 1)(2^2 + 1)(2 + 1)(2 - 1)$ = $(2^8 + 1)(2^4 + 1)(2^2 + 1)(2 + 1)(2 - 1)$ = $257 \cdot 17 \cdot 5 \cdot 3$ 따라서 $2^{16} - 1$ 을 나누었을 때 나누어 떨어지는 1과 10사이의 수 즉, 인수는 3과 5이고 이 두 수의 합은 8이다.

- **21.** 삼각형의 세 변의 길이 a, b, c에 대하여 (a+b-c)(a-b+c)=b(b+2c)+(c+a)(c-a)가 성립할 때, 이 삼각형은 어떤 삼각형인 가?
 - ① 직각삼각형
 ② 이등변삼각형
 ③ 정삼각형

 ④ 예각삼각형
 ⑤ 둔각삼각형

(a+b-c)(a-b+c) = b(b+2c) + (c+a)(c-a)에서 $\{a+(b-c)\} \{a-(b-c)\} = b^2 + 2bc + c^2 - a^2$ $a^2 - (b-c)^2 = -a^2 + b^2 + c^2 + 2bc$ $2a^2 = 2b^2 + 2c^2$ $\therefore a^2 = b^2 + c^2$ 따라서, 이 삼각형은 빗변의 길이가 a인 직각삼각형이다.

22. 실수 x가 $x^2 - 3x + 1 = 0$ 을 만족할 때, $x^3 + \frac{1}{x^3}$ 의 값을 구하면?

① 18 ② 19 ③ 20 ④ 21 ⑤ 22

$$x + \frac{1}{x} = 3$$

해설
준식의 양변을
$$x$$
로 나누면
$$x + \frac{1}{x} = 3$$

$$x^3 + \frac{1}{x^3} = \left(x + \frac{1}{x}\right)^3 - 3\left(x + \frac{1}{x}\right)$$

$$= 3^3 - 3 \times 3 = 18$$

23. $a^2+b^2+c^2=ab+bc+ca$ 이고 abc=1 일 때, $(a^3+b^3+c^3)^2$ 의 값을 계산하면?

① 1 ② 4 ③ 9 ④ 16 ⑤ 25

 $a^{3} + b^{3} + c^{3}$ $= (a + b + c)(a^{2} + b^{2} + c^{2} - ab - bc - ca) + 3abc$ $= (a + b + c) \times 0 + 3abc = 0 + 3 \cdot (1) = 3$ $\cdot (a^{3} + b^{3} + c^{3})^{2} = 0$

 $\therefore (a^3 + b^3 + c^3)^2 = 9$

해설

 $a^{2} + b^{2} + c^{2} = ab + bc + ca \ a^{2} + b^{2} + c^{2} - (ab + bc + ca) = 0$ $\frac{1}{2} (a - b)^{2} + (b - c)^{2} + (c - a)^{2} = 0$ $\therefore a = b = c \to abc = a^{3} = b^{3} = c^{3} = 1$ $(a^{3} + b^{3} + c^{3})^{2} = (1 + 1 + 1)^{2} = 9$

- 24. 대각선의 길이가 28이고, 모든 모서리의 길이의 합이 176인 직육면 체의 겉넓이를 구하려 할 때, 다음 중에서 사용되는 식은?
 - $= x^{3} (a+b+c)x^{2} + (ab+bc+ca)x abc$ $2 \frac{1}{2} \{ (a-b)^{2} + (b-c)^{2} + (c-a)^{2} \}$ $= a^{2} + b^{2} + c^{2} ab bc ca$ $3 (a+b+c)^{2} = a^{2} + b^{2} + c^{2} + 2ab + 2bc + 2ca$

① (x-a)(x-b)(x-c)

- $= x^3 + (a+b+c)x^2 + (ab+bc+ca)x + abc$ ⑤ $(a+b+c)(a^2+b^2+c^2-ab-bc-ca)$
- $= a^3 + b^3 + c^3 3abc$

직육면체의 가로의 길이, 세로의 길이, 높이를

해설

각각 a, b, c라 하면 대각선의 길이는 $\sqrt{a^2 + b^2 + c^2} = 28$ $\therefore a^2 + b^2 + c^2 = 28^2 \cdots \bigcirc$

또, 모든 모서리의 길이의 합은 176이므로

4(a+b+c) = 176

 $\therefore a+b+c=44\cdots \bigcirc$ 이 때, 직육면체의 겉넓이는 2(ab+bc+ca)이므로

 $(a+b+c)^2 = a^2 + b^2 + c^2 + 2(ab+bc+ca)\cdots \bigcirc$

따라서 ①, ①을 ⓒ에 대입하여 겉넓이를 구하면 1152이다.

25. x + y = 2, $x^3 + y^3 = 14$ 일 때, $x^5 + y^5$ 의 값을 구하면?

① 12 ② 32 ③ 52 ④ 82 ⑤ 102

 $x^{5} + y^{5} = (x^{2} + y^{2})(x^{3} + y^{3}) - x^{2}y^{2}(x + y) \cdots (*)$ $x^{3} + y^{3} = (x + y)^{3} - 3xy(x + y)$ $\therefore 14 = 8 - 6xy$ $\therefore xy = -1 \cdots \bigcirc$ $x^{3} + y^{3} = 14 \cdots \bigcirc$ $x^{2} + y^{2} = (x + y)^{2} - 2xy = 4 - 2(-1) = 6 \cdots \bigcirc$

(1, 2), (3)을 (*)에 대입하면 $x^5 + y^5 = 6 \times 14 - 2 = 82$

x + y = 0 × 11 2 = 02