1.
$$\sqrt{\sqrt{81}} - \sqrt{0.09} + \sqrt{(0.9)^2} - \sqrt{\frac{1}{16}}$$
 을 계산하면?

① 3.05 ② 3.15 ③ 3.25 ④ 3.35 ⑤ 3.45

해설 (준식) = 3 - 0.3 + 0.9 - $\frac{1}{4}$ = 3.35

- 2. $2 \le \sqrt{2x} < 4$ 을 만족하는 자연수 x의 개수는?
 - ① 3 개 ② 4 개 ③ 5 개 <mark>④</mark> 6 개 ⑤ 7 개

 $2 \le \sqrt{2x} < 4 는 4 \le 2x < 16$ 이다. 따라서 $2 \le x < 8$ 이므로 자연수 x 는 2, 3, 4, 5, 6, 7로 6개이다.

- 3. $2 + \sqrt{3}$ 의 소수 부분은?
 - ① $\sqrt{3} 5$
- ② $\sqrt{3}-4$ ③ $\sqrt{3}-3$
- ④ $\sqrt{3} 2$
- $\sqrt{3} 1$

해설 $1 < \sqrt{3} < 2$ 이고 $3 < 2 + \sqrt{3} < 4$ 이므로

2+(√3 의 정수 부분) = 3

(소수 부분)= $(2 + \sqrt{3}) - 3 = \sqrt{3} - 1$

4. $4 \cdot (\sqrt{12} \times \sqrt{7}) \div (\sqrt{28} \times \sqrt{3})$ 을 간단히 하면?

① 1 ② 2 ③ 3 ④ 4 ⑤ 5

해설 $\left(\frac{2}{2} \stackrel{\text{A}}{=} \right) = \sqrt{\frac{4 \times 12 \times 7}{28 \times 3}} = 2$

(1)
$$2a^2 + \frac{\pi}{2}$$
 (2) $4a^2 + \frac{\pi}{4}$
(3) $4a^2 + 2a + \frac{\pi}{4}$

①
$$2a^2 + \frac{1}{2}$$
 ② $4a^2 + \frac{1}{4}$ ③ $4a^2 + a + \frac{1}{2}$
④ $4a^2 + 2a + \frac{1}{2}$ ⑤ $4a^2 + 2a + \frac{1}{4}$

$$4a^2 + 2a + \frac{\pi}{2}$$

(2a)² + 2(2a)
$$\left(\frac{1}{2}\right) + \left(\frac{1}{2}\right)^2$$

= $4a^2 + 2a + \frac{1}{4}$

6.
$$a-b=1$$
 , $a^2-b^2=4$ 일 때, $a+b$ 의 값은?

① 1 ② 2 ③ 3 ④ 4 ⑤ 5

$$a^{2} - b^{2} = (a + b)(a - b) = (a + b) \times 1 = 4$$

 $\therefore a + b = 4$

7. a < 0 일 때, $\sqrt{64a^2}$ 을 간단히 한 것으로 옳은 것을 고르면?

① $-64a^2$ ② -8a ③ 8a ④ $8a^2$ ⑤ $64a^2$

해설

8a < 0이므로 $\sqrt{64a^2} = \sqrt{(8a)^2} = -(8a) = -8a$

- 8. $\sqrt{2 \times 3 \times 7^2 \times a}$ 가 정수가 되기 위한 가장 작은 자연수 a 를 구하면?
 - ① 2 ② 3

- **3**6 **4**7 **5**42

해설

 $\sqrt{294a} = \sqrt{2 \times 3 \times 7^2 \times a}$ 이 정수가 되기 위해서는 근호안의 수가 완전제곱수가 되어야 하므로 $a=2\times 3\times k^2$ 이 되어야 한다. \therefore 가장 작은 자연수 a는 k=1일 때이므로 $a=2\times3\times1^2=6$

다음 중 옳은 것은? 9.

- ① $(-a-b)^2 = -(a+b)^2$ $(-a+b)^2 = a^2 - 2ab + b^2$
- $(-a+2)(-a-2) = -a^2 4$
- $(2a b)^2 = 4a^2 b^2$
- $(a+b)^2 (a-b)^2 = 0$

① $(-a-b)^2 = \{-(a+b)\}^2 = (a+b)^2$

해설

10. 다음 중 옳지 <u>않은</u> 것은?

- ① a(b+1) + (b+1) = (a+1)(b+1)② $(x+y)^2 - 2(x+y) + 1 = (x+y-1)^2$
- ③ $x^2 + 4x + 4 y^2 = (x + y + 2)(x y + 2)$
- $(x+2y)^2 (3x-2y)^2 = -8x(x-2y)$
- $(x-3)^2 + 2(x-3) 8 = (x+1)(x-6)$

⑤ x − 3 = X 라고 하면

$$(x-3)^{2} + 2(x-3) - 8 = X^{2} + 2X - 8$$

$$= (X+4)(X-2)$$

$$= (x-3+4)(x-3-2)$$

$$= (x+1)(x-5)$$

11. 다음 그림과 같이 한 변의 길이가 x인 정사각형 한 개와, 두 변의 길이가 각각 x, 1인 직사각형 5 개, 한 변의 길이가 1인 정사각형 6개를 재배열하여 직사각형 한 개를 만들려한다. 이 직사각형의 가로의 길이를 a, 세로의 길이를 b라 할 때, $(a+b)^2$ 의 값은 되는가?

 $34x^2 + 20x + 25$

② $(2a+b)^2$ $(4a+b)^2$

⑤ 25

① $x^2 + 5x + 6$

해설

한 변이 x인 정사각형 한 개의 넓이 : x^2 세로, 가로가 각각 x, 1인 직사각형 5개의 넓이 : 5x한 변의 길이가 1인 정사각형 6개의 넓이: 6

따라서 직사각형의 넓이는 $x^2 + 5x + 6 = (x+2)(x+3)$ 이다. 가로 길이를 x+3=a, 세로 길이를 x+2=b라 하면

 $(a+b)^2 = (x+3+x+2)^2$ $= (2x+5)^2$ $= 4x^2 + 20x + 25$

- **12.** $x^2 9 + xy 3y$ 를 인수분해하면?
 - ① (x+3)(x+3+y)③ (x-3)(x-3-y)
- ② (x+3)(x+3-y)④ (x-3)(x+3+y)
- - =1 22

(x+3)(x-3) + y(x-3) = (x-3)(x+3+y)

13. (x+3y+z)(x-3y-z)를 전개하면?

- ① $x^2 3yz 6y^2 z^2$ ② $x^2 3yz 9y^2 z^2$
- ③ $x^2 6yz 3y^2 z^2$ ④ $x^2 6yz 9y^2 z^2$

해설

(x + 3y + z)(x - 3y - z)에서 3y + z = t라 하자. $(a+b)(a-b) = a^2 - b^2$ 을 이용하여 전개하면

 $x^2 - t^2$ 이고 t = 3y + z를 대입하면

 $x^{2} - (3y + z)^{2}$ $= x^{2} - (9y^{2} + 6yz + z^{2})$ $= x^{2} - 9y^{2} - 6yz - z^{2}$

14. 이차식 $ax^2+30x+b$ 를 완전제곱식으로 고치면 $(cx+3)^2$ 일 때, $\frac{b}{a+c}$ 의 값을 구하면?

- ① $\frac{1}{10}$ ② $\frac{3}{10}$ ③ $\frac{1}{5}$ ④ $\frac{3}{5}$ ⑤ $\frac{1}{2}$

 $ax^2 + 30x + b = (cx + 3)^2 = c^2x^2 + 6cx + 9$ $\Rightarrow a = c^2, \ 30 = 6c, \ b = 9$ $\Rightarrow a = 25, \ c = 5, \ b = 9$ 따라서 $\frac{b}{a+c} = \frac{9}{25+5} = \frac{9}{30} = \frac{3}{10}$ 이다.

15. 다음 보기 중 xy(2x + 3y) - xy(x + y) 의 인수를 모두 고른 것은?

4 (L), (2), (1) (5) (E), (1), (1)

 $xy(2x + 3y) - xy(x + y) = xy\{(2x + 3y) - (x + y)\}$ = xy(x + 2y)