. 다음 곱셈공식을 전개한 것 중 바른 것은?

①
$$(x-y-1)^2 = x^2 + y^2 + 1 - 2xy - 2x - 2y$$

$$(2)(a+b)^2(a-b)^2 = a^4 - 2a^2b^2 + b^4$$

$$(-x+3)^3 = x^3 - 9x^2 + 27x - 27$$

$$(a-b)(a^2 + ab - b^2) = a^3 - b^3$$

$$(p-1)(p^2+1)(p^4+1) = p^{16}-1$$

- 해설

①
$$(x-y-1)^2 = x^2 + y^2 + 1 - 2xy - 2x + 2y$$

③ $(-x+3)^3 = -x^3 + 9x^2 - 27x + 27$

$$(p-1)(p+1)(p^2+1)(p^4+1) = p^8-1$$

2. 다항식 $f(x) = 3x^3 + ax^2 + bx + 12$ 가 x - 2로 나누어 떨어지고 또, x - 3으로도 나누어 떨어지도록 상수 a + b의 값을 정하여라.

▷ 정답: -5

▶ 답:

$$f(x)$$
 가 $x-2$ 로 나누어 떨어지려면 $f(2) = 24 + 4a + 2b + 12 = 0$

또,
$$f(x)$$
 가 $x-3$ 으로 나누어 떨어지려면
$$f(3) = 81 + 9a + 3b + 12 = 0$$

 $\therefore 4a + 2b + 36 = 0 \quad \cdots \quad \bigcirc$

$$\therefore 9a + 3b + 93 = 0 \quad \cdots \quad \Box$$

①,
$$\bigcirc$$
을 연립하여 풀면 $a = -13$, $b = 8$

3. 실수 x 에 대하여 복소수 $(1+i)x^2 - (1+3i)x - (2-2i)$ 가 순허수가 되도록 하는 x 의 값은?

①
$$-2$$
 ② -1 ③ 0 ④ 1 ⑤ 2

$$(1+i)x^2 - (1+3i)x - (2-2i)$$

= $(x^2 - x - 2) + (x^2 - 3x + 2)i$
순허수가 되려면 (실수 부분)=0, (허수 부분) \neq 0이어야 하므로 $x^2 - x - 2 = 0$, $x^2 - 3x + 2 \neq 0$

(i) $x^2 - x - 2 = 0$ 에서 (x+1)(x-2) = 0

해설
$$(좌변) = \frac{(2+i)(1-4i)}{(1+\sqrt{2}i)(1-\sqrt{2}i)}$$

여 a - 3b 의 값을 구하여라.

 \triangleright 정답: a-3b=9

등식 $\left(\frac{2+i}{1+\sqrt{2}i}\right)\left(\frac{1-4i}{1-\sqrt{5}i}\right) = a+bi$ 를 만족하는 실수 a, b 에 대하

답:

$$= \frac{2 - 8i + i - 4i^2}{1 - 2i^2}$$

$$= \frac{6-7i}{3} = 2 - \frac{7}{3}i$$
이므로

$$\begin{bmatrix} 3 \\ 2 - 7i - a + 4 \end{bmatrix}$$

$$2 - \frac{7}{3}i = a + bi$$

$$2 - \frac{7}{3}i = a + bi$$

복소수가 서로 같을 조건에 의하여

$$a = 2, b = -\frac{7}{3}$$

 $\therefore a - 3b = 2 - 3 \times \left(-\frac{7}{-}\right) = 2 + 7 = \frac{1}{3}$

$$\therefore a - 3b = 2 - 3 \times \left(-\frac{7}{3}\right) = 2 + 7 = 9$$

5. 이차방정식 $x^2+7x+1=0$ 의 두 근이 α , β 일 때, $(\alpha^2+\beta^2)+5(\alpha+\beta)$ 의 값을 구여라.

➢ 정답 : 12

이차방정식 $x^2 + 7x + 1 = 0$ 의 두 근이 α , β 이므로, 근과 계수와의 관계에 의해서

$$\alpha + \beta = -7, \ \alpha\beta = 1$$

 $(\alpha^2 + \beta^2) = (\alpha + \beta)^2 - 2\alpha\beta = (-7)^2 - 2 \cdot 1 = 47$

 $\therefore 47 + 5 \cdot (-7) = 47 - 35 = 12$

- - ① $y = -2x^2 + 1$

다음 이차함수 중 최솟값을 갖는 것은?

② $y = -x^2 + x + 1$

 $3 y = -(x-1)^2 + 4$

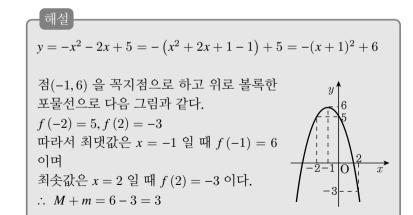
 $y = 1 - x^2$

5 y = (x-1)(x+2)

해설

그래프가 아래로 볼록해야 최솟값을 가진다.

7. 함수 $y = -x^2 - 2x + 5$ $(-2 \le x \le 2)$ 의 최댓값을 M, 최솟값을 m이라 할 때, M + m을 구하여라.



- 8. 합이 18 인 두 수가 있다. 한 수를 x, 두 수의 곱을 y 라 할 때, 두 수의 곱의 최댓값을 구하면?
 - ① 11 ② 21 ③ 25 ④ 81 ⑤ 100

합이 18 인 두 수가 있다. 한 수를
$$x$$
 로 두면 나머지 한 수는 $(18-x)$ 이다. $y=x(18-x)=-x^2+18x=-(x^2-18x+81)+81$ $y=-(x-9)^2+81$ 따라서 두 수의 곱의 최댓값은 81 이다.

9. $(-2x^3 + x^2 + ax + b)^2$ 의 전개식에서 x^3 의 계수가 -8일 때, a - 2b의 값은?

①
$$-6$$
 ② -4 ③ -2 ④ 0 ⑤ 2

전개할 때 삼차항은 일차항과 이차항의 곱, 삼차항과 상수항의 곱이 각각 2개씩 나온다.
$$(-2x^3 \times b) \times 2 + (x^2 \times ax) \times 2 = (-4b + 2a)x^3$$

$$2a - 4b = -8$$

 $\therefore a - 2b = -4$

10. $\frac{2x+3a}{4x+1}$ 가 x에 관계없이 일정한 값을 가질 때, 12a의 값을 구하시오.

 $\frac{2x+3a}{1+3a} = k$ (일정값 = k) 라 놓으면 2x+3a = k(4x+1) 에서

$$ightharpoonup$$
 정답: $12a = 2$

$$(2-4k)x + 3a - k = 0$$

이 식은 x 에 대한 항등식이므로,

2-4k=0, 3a-k=0

$$k = \frac{1}{2}$$
이므로 $3a = k$ 에서 $a = \frac{1}{6}$

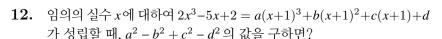
 $\therefore 12a = 2$

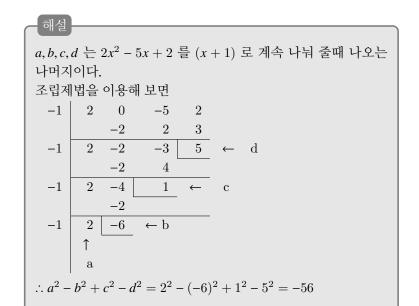
11. 다항식
$$f(x)$$
를 $(3x+2)(x-4)$ 로 나눈 나머지가 $-2x+1$ 일 때, $f(x^2+3)$ 을 $x-1$ 로 나눈 나머지는?

$$f(x) = (3x + 2) (x - 4) Q(x) - 2x + 1 \cdots ①$$

$$f(x^3 + 3) = (x - 1) Q'(x) + R \cdots ②$$
①의 양변에 $x = 4$ 를 대입하면 $f(4) = -7$
②의 양변에 $x = 1$ 을 대입하면 $f(4) = R$

$$\therefore R = -7$$





13. 이차방정식 $x^2+6x+a=0$ 의 한 근이 $b+\sqrt{3}i$ 일 때, a+b의 값을 구하여라. (단, a,b는 실수이고 $i=\sqrt{-1}$ 이다.)

계수가 모두 실수이므로
다른 한 근은
$$b - \sqrt{3}i$$
이다.
따라서 두 근의 근과 계수의 관계에서

 $a = (b + \sqrt{3}i)(b - \sqrt{3}i) = b^2 + 3$ -6 = $(b + \sqrt{3}i) + (b - \sqrt{3}i) = 2b$,

따라서
$$a+b=9$$

b = -3, a = 12

14. 이차방정식 $x^2 - 14kx + 96k = 0$ 의 두 근의 비가 3:4일 때, 양수 k의 값을 구하여라.

답:

$$\triangleright$$
 정답: $k=2$

두 근을
$$3\alpha$$
, 4α 라고 하면
근과 계수의 관계에 의하여
 $3\alpha + 4\alpha = 14k \cdots$

 $3\alpha \cdot 4\alpha = 96k \cdot \cdot \cdot \cdot \cdot \square$

① 에서 $7\alpha = 14k$... $\alpha = 2k \cdots$... \square \square 에서 $12\alpha^2 = 96k$... $\alpha^2 = 8k \cdots$... \square

⑥을 @에 대입하면
$$4k^2 = 8k$$
, $4k(k-2) = 0$
∴ $k = 0$ 또는 $k = 2$

따라서 양수 k의 값은 k=2이다.

15. 방정식 $x^2 + x + 1 = 0$ 의 한근이 ω 일 때 $x = \frac{2}{\omega + 1}$ 가 $x^2 + px + q = 0$ 의 근이다. 이 때, 유리수 p, q의 합을 바르게 구한 것은?

 $\bigcirc 1 - 2 \qquad \bigcirc 0 \qquad \bigcirc 3 \qquad \bigcirc 2 \qquad \bigcirc 4 \qquad \bigcirc 8$

해설
$$x^{2} + x + 1 = 0 \ \ \stackrel{\square}{\neg} \ \ \stackrel{\square}{\neg} \ \ \stackrel{\square}{\neg} \ \ \stackrel{\square}{\neg} \ \ \stackrel{\square}{\rightarrow} \ \ \stackrel{\square}{\rightarrow} \ \ 1$$
$$x^{2} + px + q = 0 \ \ \stackrel{\square}{\neg} \ \ \stackrel{\square}{\neg} \ \ \stackrel{\square}{\rightarrow} \ \ \frac{2}{\overline{\omega} + 1}, \frac{2}{\overline{\omega} + 1}$$
$$-p = \frac{2}{\omega + 1} + \frac{2}{\overline{\omega} + 1} = \frac{2(\omega + \overline{\omega}) + 4}{\omega \overline{\omega} + (\omega + \overline{\omega}) + 1} = 2$$
$$q = \frac{2}{\omega + 1} \cdot \frac{2}{\overline{\omega} + 1} = \frac{4}{\omega \overline{\omega} + (\omega + \overline{\omega}) + 1} = 4$$
$$p = -2, q = 4 \ \therefore \ p + q = 2$$

$$x^{2} + x + 1 = 0 \implies x = \frac{-1 \pm \sqrt{3}i}{2}$$
$$\frac{-1 + \sqrt{3}i}{2} = \omega \text{ 라 하자.}$$
$$\frac{2}{\omega + 1} = \frac{2}{\frac{-1 + \sqrt{3}i}{2} + 1} = 1 - \sqrt{3}i$$

 \therefore 다른 한근은 켤레복소수인 $1+\sqrt{3}i$ 가 된다. $p=-(두근의 합)=-2,\ q=(두근의 곱)=4$ p+q=2

16. 최댓값이 이고, 대칭축이 x=3 인 이차함수의 식이 $y=-(x-p)^2+q$ 일 때, p+q 의 값을 구하여라.

최댓값이
$$6$$
 이므로 $q = 6$
대칭축이 $x = 3$ 이므로 $p = 3$
 $\therefore p + q = 3 + 6 = 9$

17. 둘레의 길이가 24 인 철사를 구부려서 부채꼴 모양을 만들려고 한다. 부채꼴의 넓이를 y 라고 할 때, 부채꼴의 넓이의 최댓값을 구하면?

① 18

(2) 20

③ 30

(4) 32

반지름의 길이를 x 라 하면 호의 길이는 24 - 2x 이다.

$$y = \frac{1}{2} \times x \times (24 - 2x)$$

$$= x(12 - x)$$
$$= -x^2 + 12x$$

$$= -(x^2 - 12x + 36 - 36)$$

 $=-(x-6)^2+36$ 이차함수는 위로 볼록이므로 꼭짓점이 최댓값을 나타낸다.

따라서 꼭짓점이 (6,36) 이므로 반지름의 길이 x = 6 일 때, 부채꼴의 넓이 v 가 최댓값 36 을 가진다.

18. 실수
$$x$$
가 $x^2 - 3x + 1 = 0$ 을 만족할 때, $x^3 + \frac{1}{x^3}$ 의 값을 구하면?

준식의 양변을
$$x$$
로 나누면
$$x + \frac{1}{x} = 3$$
$$x^3 + \frac{1}{x^3} = \left(x + \frac{1}{x}\right)^3 - 3\left(x + \frac{1}{x}\right)$$
$$= 3^3 - 3 \times 3 = 18$$

19. 모든 실수 x에 대하여 $P(x^2+1) = \{P(x)\}^2 + 1$, P(0) = 0을 만족한다. 2차 이하의 다항식 P(x)의 계수의 합은?

① 0 ② 1 ③ 2 ④ 3 ⑤ 무수히 많다.

해설 $P(x) = ax^2 + bx + c \text{ 라 하면}$ $P(0) = 0 \text{에서 } c = 0 \therefore P(x) = ax^2 + bx$ $P(x^2 + 1) = \left\{P(x)\right\}^2 + 1 \text{이므로}$ $a(x^2 + 1)^2 + b(x^2 + 1) = (ax^2 + bx)^2 + 1$ $ax^4 + 2ax^2 + a + bx^2 + b = a^2x^4 + 2abx^3 + b^2x^2 + 1$ 양변의 계수를 비교하면 $a = a^2, \ 2ab = 0, \ 2a + b = b^2, \ a + b = 1$ $a^2 = a \text{ 와 } a + b = 1 \text{에서}$ $(a, b) = (0, 1), \ (1, 0) \text{이 되는데}$ 이 중 (1, 0)은 $2a + b = b^2$ 을 만족하지 않으므로 (a, b) = (0, 1)즉, P(x) = x뿐이다. \therefore 계수의 합은 1

 $P(x^2 + 1) = \{P(x)\}^2 + 1$ 에서 x = 0을 대입하면 $P(1) = \{P(0)\}^2 + 1$ 이 된다. P(1) = 1(...모든 계수의 합은 x = 1 대입)

20. x-1로 나누면 나머지가 3, x-2로 나누면 나머지가 7, x-3으로 나누면 나머지가 13이 되는 가장 낮은 차수의 다항식을 f(x)라 할 때, f(-3)의 값은?

2 10

③ 11

(4) 12

⑤ 13

해설
$$f(x) = k(x-1)(x-2)(x-3) + ax^2 + bx + c$$

$$f(1) = a + b + c = 3 \cdots 1$$

a = 1, b = 1, c = 1 f(x) 가 가장 낮은 차수가 되려면 k = 0 $\therefore f(x) = x^2 + x + 1$,

 $f(-3) = (-3)^2 + (-3) + 1 = 7$

21.
$$a^2 - b^2 = 1$$
일 때, $\{(a+b)^n + (a-b)^n\}^2 - \{(a+b)^n - (a-b)^n\}^2$ 의 값은? (단, n 은 자연수)

① 2 ②
$$2(a+b)^n$$
 ③ 3 4 ④ $4(a+b)^n$ ⑤ $4(a-b)^n$

(A)² - (B)² 형태이므로
합차공식을 사용하여 정리하면
(준식)=
$$4(a+b)^n(a-b)^n=4(a^2-b^2)^n=4$$

22.
$$a+b+c=1$$
을 만족하는 세 실수 a, b, c 에 대하여 $x=a-2b+3c$ $,y=b-2c+3a, z=c-2a+3b$ 라 할 때, $(x^2+2xy+1)+(y^2+2yz+1)+(z^2+2zx+1)$ 의 값을 구하면?

$$a+b+c=1$$
 ○ □ 로
 $x+y+z=2a+2b+2c=2(a+b+c)=2$
 $\therefore (x^2+2xy+1)+(y^2+2yz+1)+(z^2+2zx+1)$
 $=x^2+y^2+z^2+2xy+2yz+2zx+3$

$$= (x + y + z)^{2} + 3$$
$$= 2^{2} + 3 = 4 + 3 = 7$$

23. x에 관한 두 다항식 f(x), g(x)에 대하여, (x+1)f(x)=(x-1)g(x)일 때, 다음 중 f(x)와 g(x)의 최소공배수는?

①
$$(x-1)g(x)$$
 ② $(x+1)g(x)$ ③ $(x-1)^2g(x)$ ④ $(x+1)^2g(x)$

$$(x+1)f(x) = (x-1)g(x)\cdots①$$

$$x+1 과 x-1 이 서로 소이므로$$

$$x+1 은 g(x) 의 인수이다.$$
따라서 $g(x) = (x+1)h(x)\cdots②$ 로 놓으면 ①에서 $f(x) = (x-1)h(x)\cdots③$ ②와 ③에서 $f(x)$ 와 $g(x)$ 의 최소공배수는 $(x-1)(x+1)h(x)$ 즉, $(x-1)g(x)$

24. x 에 관한 두 다항식 $f(x) = x^3 + ax^2 + 2x - 1$, $g(x) = x^3 + bx^2 + 1$ 이 이차식의 최대공약수 h(x)를 가질 때, h(-1)의 값을 구하면? (단, h(x)의 이차항의 계수는 1이다.)

(3) 0

(5) -6

 \bigcirc 6

$$f(x) + g(x) = x \{2x^2 + (a+b)x + 2\} = G(k+l)$$

 $f(x) - g(x) = (a-b)x^2 + 2x - 2 = G(k-l)$ (단, k, l : 서로소)
 $\therefore -2x^2 - (a+b)x - 2 = (a-b)x^2 + 2x - 2$
 $a-b=-2, a+b=-2$
 $\therefore a=-2, b=0$

 $h(x) = x^2 - x + 1$ h(-1) = 3

25.
$$x = \frac{1}{2}(-1 + \sqrt{3}i)$$
 일 때 $x + \frac{1}{x + \frac{1}{x + \frac{1}{x + \frac{1}{x}}}}$ 의 값은?

① 0 ② 1 ③ 2
④
$$\frac{1-\sqrt{3}i}{2}$$
 ③ $\frac{-5+\sqrt{3}i}{4}$