$$x = \sqrt{3} + \sqrt{2}$$
이고, $a = \sqrt{3} + 1$ 일 때, $a^{x^2} \div a^{2\sqrt{2}x + 3}$ 의 값을 구하면?

 $\frac{2-\sqrt{3}}{4}$ ② $\frac{4+\sqrt{3}}{4}$ ③ $\frac{2\sqrt{3}-3}{4}$

2.
$$x^{30}$$
을 $x-3$ 으로 나눌 때 몫을 $Q(x)$, 나머지를 R 라 하면 $Q(x)$ 의 계수의 총합(상수항 포함)과 R 과의 차는?

① $\frac{1}{2}(3^{29}+1)$		$3 \frac{1}{2}(3^{30}-1)$	
1	1		

 $\textcircled{4} \ \frac{1}{2}(3^{30}+1)$ $\textcircled{5} \ \frac{1}{2}(3^{29}-1)$

3. $(x+2)(x-3)(x+6)(x-9)+21x^2$ 을 인수분해하면 $(x^2+p)(x^2+qx-18)$ 이다. pq의 값을 구하여라.

▶ 답:

① 1+i ② 1-i ③ 2+i

 $\alpha = \frac{\sqrt{3} + i}{2}$ 일 때, $2\alpha^5(\alpha^t)^4$ 을 간단히 하면?

(4) 2-i (5) $\sqrt{3}+i$

4. $\alpha = a + bi$ $(a, b = 2c^{-1})$ 일 때, $\alpha^t = b + ai$ 라 한다.

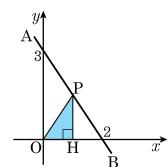
5. 복소수들 사이의 연산
$$*$$
가 다음과 같다고 하자. $\alpha*\beta=\alpha+\beta+\alpha\beta i$ 이 때, $(1+2i)*z=1$ 을 만족시키는 복소수 z 는?(단, $i=\sqrt{-1}$)

(3) -1 + i

(2) 1 - i

①
$$1+i$$

④ $-1-i$

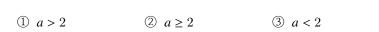

©
$$1 + \alpha + \alpha^2 + \dots + \alpha^{15} = 1$$
© $z = \frac{\alpha + 3}{2\alpha + 1}$ 일 때, $z\overline{z} = \frac{7}{3}$

는 z 의 켤레복소수)

6. $\alpha = \frac{-1 + \sqrt{3}i}{2}$ 일 때, 다음 보기 중 옳은 것을 <u>모두</u> 고른 것은? (단, \overline{z}

7.	둘레의 길이가 48cm 인 직사각형 중에서 그 넓이가 최대가 되도록 하는 직사각형의 가로, 세로의 길이를 순서대로 써라.		
	▶ 답:	- cm	
	>> 답:	cm	

8. 선분 AB 위의 한 점 P 에서 x 축에 내린 수선의 발을 H 라고 할 때, \triangle POH 의 넓이의 최댓값을 구하여라.



말: _____

① x > 8 ② x < -2 ③ -8 < x < -2

4 - 2 < x < 8 5 - 8 < x < 2

10. 부등식 $a(x^2 - 2x + 1) > 2(x^2 - 2x - 2)$ 를 만족하는 실수 x가 존재할 때, 상수 a의 범위는?

④ a는 모든 실수 ⑤ a < ±2

11. 다음 부등식 \bigcirc 과 부등식 \bigcirc 의 해가 일치할 때, a,b의 값을 구하면?

$$x^{2} - 2x - 3 < 3|x - 1| \cdots \bigcirc$$

$$ax^{2} + 2x + b > 0 \cdots \bigcirc$$

①
$$a = -1$$
, $b = 15$ ② $a = -2$, $b = 14$

③
$$a = -3, b = 13$$
 ④ $a = -4, b = 12$

(5) a = -5, b = 10

①
$$P\left(\frac{3}{2}, 0\right), Q\left(0, \frac{15}{4}\right)$$
 ② $P\left(\frac{1}{2}, 0\right), Q\left(0, \frac{15}{4}\right)$

13. 두 점 A(1, 0), B(4, 0) 에서의 거리의 비가 2:1 이 되도록 움직이는 점 P 의 자취는 원이다. 이 원의 둘레의 길이는?

① 2π ② $2\sqrt{3}\pi$ ③ 4π ④ $2\sqrt{5}\pi$ ⑤ 8π

14. 두 점 A(-4, 2), B(2, -1)로 부터의 거리의 비가 2:1 인 점이 나타 내는 원의 중심과 직선 y = 3x - 4 의 거리는?

(4) $2\sqrt{2}$

(3) $\sqrt{6}$

(1) $\sqrt{2}$

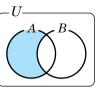
15. 두 집합 $A = \{0, 1\}, B = \{1, 2, 3\}$ 에 대하여 집합 $C = \{x \mid x = 1\}$ $a \times b$, $a \in A$, $b \in B$ 이다. 이때, 집합 C = B 원소나열법으로 나타낸 것은? (1) $\{0\}$ (2) {0, 1} \bigcirc {0, 1, 2}

 \bigcirc {0, 1, 2, 3, 4}

(4) {0, 1, 2, 3}

16. 두 집합 $A = \{4, 6, a, 10\}, B = \{3a, 4 - b\}$ 에 대하여 $B \subset A$ 일 때, 자연수 a - b 의 값을 구하여라. (단, a, b 는 0 보다 크고 4 와 같거나 작다.)

17. 집합 $A = \{1, 2, 3, 4, 5\}$ 의 부분집합 X 에 대하여, 집합 $B = \{2, 4, 7\}$, $B \cap X \neq \emptyset$ 일 때, 집합 X 의 개수를 구하라.


개

> 답:

18. 다음 중에서
$$\{(A - B) \cup A^c\} \cap \{(A \cap B^c) \cup B\}$$
와 같은 집합이 아닌 것은?

 $(A \cup B) - (A \cap B)$ ② $(A \cup B) \cap (A^c \cup \beta^c)$ ③ $(A - B) \cup (B - A)$ ④ $(A \cup B^c) \cap (A^c \cup B)$

다음 중 다음 벤 다이어그램의 색칠된 부분이 나타내는 집합에 대한 설명이다. 옳은 것을 모두 고르면?

① *A - B* 라고 쓰며, *A* 마이너스 *B* 라고 읽는다.

③ $A - B = \{x | x \in A$ 그리고 $x \notin B\}$

- ◎ 4 세도 스탠크 p세도 스탠드 이 4 도그 시크시키 기회시기
- ② A 에도 속하고 B 에도 속하는 원소들로 이루어진 집합이다.

19.

- A B = B A

20. 등식 (A - B) - C = A - (B ∪ C) 를 증명하는 데 꼭 필요한 것을 다음 중에서 모두 고르면?

① 교환법칙
 ⑥ 분배법칙
 ⑥ 흡수법칙
 ⑩ 드 모르간의 법칙
 ⑩ X - Y = X ∩ Y^c

 \bigcirc \bigcirc , \bigcirc , \bigcirc , \bigcirc

3 2, 0, H

 $(4 \ \square, \square, \square, \square, \square)$ $(5 \ \square, \square, \square, \square)$

 \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc

21. 자연수 전체의 집합에서 정의된 함수 $f(n) = \begin{cases} n-2 & (n \ge 100 일 때) \\ f(f(n+4)) & (n < 100 일 때) \end{cases}$ 에서 f(96) 의 값을 구하면?

- **22.** 함수 f(x) = x+2에 대하여 $f \circ f = f^2$, $f \circ f^2 = f^3$, ... $f \circ f^{99} = f^{100}$ 으로 정의할 때, $f^{100}(1)$ 의 값을 구하여라.
 - ▶ 답:

- **23.** 두 함수 f(x) = 2x 1, g(x) = -4x + 5 에 대하여 $f \circ h = g$ 가 성립할 때, 함수 h(x) 에 대하여 h(-5) 를 구하여라.
 - ▶ 답:

24. $2 \le x \le 3$ 에서 부등식 $ax + 1 \le \frac{x+1}{x-1} \le bx + 1$ 이 항상 성립할 때, a의 최댓값과 b 의 최솟값의 합을 구하면?

①
$$\frac{1}{2}$$
 ② $\frac{2}{2}$ ③ 1 ④ $\frac{4}{2}$ ⑤ $\frac{5}{2}$

- **25.** < x >= x [x] 라 할 때, $< \sqrt{3 + 2\sqrt{2}} > -\frac{1}{<\sqrt{3 + 2\sqrt{2}}}$ 의 값은?(단, [x]는 x보다 크지 않은 최대 정수이다.)
 - (i) $-2\sqrt{2}$ (2) -2 (3) -1
 - ① $-2\sqrt{2}$ ② -2④ 2 ⑤ $2\sqrt{2}$