1. x에 관한 삼차식 $x^3 + mx^2 + nx + 1$ 을 x + 1로 나누면 나머지가 5이고, x - 2로 나누면 나머지가 3이다. 이 때, 상수 m - n의 값을 구하여라.

▶ 답: _____

2. $f(x) = x^2 - ax + 1$ 이 x - 1로 나누어 떨어질 때 상수 a의 값을 구하여라.

) 답: a = _____

3. 다항식 $f(x) = x^3 + ax^2 + 3$ 을 일차식 x - 1로 나누어 떨어지도록 a의 값을 정하면?

① -2 ② -4 ③ -6 ④ -8 ⑤ -10

4. 다음 중 다항식 $x^4 - 5x^2 + 4$ 를 인수분해 할 때, 나타나는 인수가 <u>아닌</u> 것은?

① x-1 ② x-2 ③ x-3 ④ x+1 ⑤ x+2

5. $x^4 + 3x^2 + 4 = (x^2 + x + 2)(x^2 + ax + b)$ 일 때, 상수 a, b의 곱을 구하여라.

> 답: _____

6. x에 대한 다항식 $x^3 - 2x^2 - x + 2$ 가 (x+a)(x+b)(x+c)로 인수분해 될 때, $a^2 + b^2 + c^2$ 의 값은? (단, a,b,c는 상수)

① 5 ② 6 ③ 7 ④ 8 ⑤ 9

7. 다항식 $A = 2x^3 - 7x^2 - 4$ 를 다항식 B 로 나눌 때, 몫이 2x - 1, 나머지가 -7x-2 이다. 다항식 $B=ax^2+bx+c$ 일 때, $a^2+b^2+c^2$ 의 값은?

① 3 ② 6 ③ 9 ④ 14 ⑤ 17

- 8. 다항식 $2x^2 + 5ax a^2$ 을 다항식 P(x)로 나눈 몫이 x + 3a, 나머지가 $2a^2$ 일 때, 다항식 (x + a)P(x)를 나타낸 것은?
 - $3 2x^2 + 3ax + a^2$
 - ① $x^2 + 2ax 2a^2$ ② $x^2 a^2$
- _ ,

9. $(a+b)(a^2-ab+b^2)(a^3-b^3)$ 의 전개식으로 옳은 것은?

① $a^3 + b^3$

② $a^6 + b^6$

 $3 a^6 - b^6$

10. 두 다항식 $(1+x+x^2+x^3)^3$, $(1+x+x^2+x^3+x^4)^3$ 의 x^3 의 계수를 각각 a, b라 할 때, a-b의 값은?

1 **5** -1

 $4^3 - 5^3$ ② $3^3 - 3^4$ ③ 0

11. $(10^5 + 2)^3$ 의 각 자리의 숫자의 합을 구하여라.

① 15 ② 18 ③ 21 ④ 26 ⑤ 28

12. $x^2 - x + 1 = 0$ 일 때, $x^5 + \frac{1}{x^5}$ 의 값은? ① -2 ② -1 ③ 0 ④ 1 ⑤ 2

13. $x^3 - 4x^2 + ax + b$ 를 $(x+1)^2$ 으로 나누면 나머지가 7이 될 때, a+b의 값은?

① -12 ② -10 ③ 0 ④ 10 ⑤ 12

14. $(x^3-x^2-2x+1)^5=a_0+a_1(x-1)+a_2(x-1)^2+\cdots+a_{15}(x-1)^{15}$ 일 때, $a_0+a_2+a_4+\cdots+a_{14}$ 의 값을 구하여라.

답: _____

 $15. \quad x^4$ 을 $x+rac{1}{2}$ 로 나누었을 때의 몫을 Q(x), 나머지를 R_1 이라 하자. R_1 을

구하고, 이 때, Q(x)를 $x-\frac{1}{2}$ 로 나누었을 때의 몫 $Q_1(x)$ 을 구하면?

- ① $R_1 = \frac{1}{16}$, $Q_1(x) = (x \frac{1}{2})(x^2 + \frac{1}{4})$ ② $R_1 = \frac{1}{16}$, $Q_1(x) = (x + \frac{1}{2})(x^2 + \frac{1}{4})$ ③ $R_1 = \frac{1}{16}$, $Q_1(x) = (x^2 \frac{1}{4})$ ④ $R_1 = \frac{1}{16}$, $Q_1(x) = x^2 + \frac{1}{4}$ ⑤ $R_1 = \frac{1}{16}$, $Q_1(x) = x + \frac{1}{2}$

16. 다항식 f(x)를 x+1로 나눈 나머지가 -3이고, x-3으로 나눈 나머지가 5이다. f(x)를 (x+1)(x-3)로 나누었을 때의 나머지를 구하여라.

답: _____

17. 다항식 f(x)를 x+1로 나눌 때의 나머지가 3이고, x-2로 나누어서 떨어진다. 이 다항식을(x+1)(x-2)로 나눌 때의 나머지를 구하면?

④ 2

⑤ 3

① 2x + 1 ② -x + 2 ③ x - 1

18. $2x^3 + 9x^2 + 11x + 7 = a(x+1)^3 + b(x+1)^2 + c(x+1) + d$? $x \in \mathbb{R}$ 대한 항등식일 때, a, b, c, d를 차례로 구하면?

3 -3, 1, -3, -2 4 -2, -3, 1, -3

② 2, 3, -1, 3

 \bigcirc 1, -3, 4, -2

① 3, -1, 3, 2

19. 세 실수 a, b, c가 다음 세 조건을 만족한다.

a + b + c = 1, ab + bc + ca = 1, abc = 1이 때, (a+b)(b+c)(c+a)의 값은?

① 0 ② 1 ③ 2 ④ 3 ⑤ 4

20. a+b+c=7, $a^2+b^2+c^2=21$, abc=8 일 때, $a^2b^2+b^2c^2+c^2a^2$ 의 값은?

① 26 ② 48 ③ 84 ④ 96

⑤ 112

21. 어떤 일차식 g(x)에 대하여

 $x^4+2x^3-3x^2-g(x)=\left\{(x-\alpha)(x-\beta)\right\}^2$ 가 성립한다. 이 때, $\alpha\beta$ 의 값은?

① -2 ② -1 ③ 0 ④ 1 ⑤ 2

22. $x^{113}+1$ 을 x^3+x 로 나누었을 때, 몫을 Q(x), 나머지를 R(x) 라고 하자. 이때, R(2006)의 값을 구하여라.

답: _____

23. $x^4 + 2x^3 - 2x^2 + 2x - 3$ 을 바르게 인수분해 한 것을 찾으면?

- ③ $(x^2+1)(x-3)(x-1)$ ④ $(x^2-3)(x-1)(x+1)$
- ① $(x^2+1)(x+3)(x+1)$ ② $(x^2+1)(x+3)(x-1)$
- $(x^2 + 3)(x 1)(x + 1)$

24. 0이 아닌 세 수가 있다. 이들의 합은 0, 역수의 합은 $\frac{3}{2}$, 제곱의 합은 1일 때, 이들 세 수의 세제곱의 합을 구하여라.

▶ 답: _____

25. 세 변의 길이가 a, b, c인 삼각형에 대하여 $(a^2+b^2)c+(a+b)c^2=(a+b)(a^2+b^2)+c^3$ 이 성립할 때, 이 삼각형은 어떤 삼각형인가?

① b = c 인 이등변 삼각형 ② a가 빗변인 직각삼각형

③ a=c인 이등변 삼각형 ④ c가 빗변인 직각삼각형

⑤ 정삼각형

26. 실수 a, b, c에 대하여 $[a, b, c] = a^2 + bc$ 라 하고 x + y + z = 10, $x^2 + y^2 + z^2 = 12$ 일 때, [x, 2y, z] + [y, 2z, x] + [z, 2x, y]의 값은?

3 88

② 22

① 10

4 100

⑤ 144

27. 두 다항식 $x^3 + px^2 + qx + 1$ 과 $x^3 + qx^2 + px + 1$ 의 최대공약수가 x에 대한 일차식일 때, 상수 p, q에 대하여 p + q의 값을 구하여라.

답: _____

28. 다음은 유클리드 호제법 '두 다항식 *A*, *B* 에 대하여 *A* 를 *B* 로 나눈 나머지를 *R* 라 하면 *A* 와 *B* 의 최대공약수는 *B* 와 *R* 의 최대공약수와 같다.'를 보이는 과정이다.

A, B 의 최대공약수를 G 라 하면,

A = Ga, B = Gb (단, a, b 는 서로소)로 나타낼 수 있다. A = B 로 나눈 몫을 Q 라 하면 A = BQ + R 에서 Ga = GbQ + R $\therefore R = G(a - bQ)$ 즉, $G \vdash B$ 와 R 의 () 가 아니라면 () 가 () 와 () 가 아니라면 () 가

b 와 a-bQ 가 (나) 이므로 B 와 R 의 최대공약수는 A 와 B

① 공약수, 공약수 ② 공약수, 서로소

() 안의 (가), (나) 에 알맞은 것은?

의 최대공약수 *G* 와 같다.

③ 공약수, 공배수④ 공배수, 서로소⑤ 공배수, 공약수

- **29.** 다항식 f(x)는 모든 실수 x에 대하여 $f(x^2 + 1) = x^4 + 5x^2 + 3$ 을 만족시킨다. $f(x^2 - 1)$ 을 구한 것은?
 - ④ $x^4 + x^2 + 3$ ⑤ 답없음
 - ① $x^4 + 5x^2 + 1$ ② $x^4 + x^2 3$ ③ $x^4 5x^2 + 1$

30.
$$x^2 - x - 1 = 0$$
일 때, $x^3 - \frac{1}{x^3}$ 의 값과 $y + \frac{1}{y} = 1$ 일 때, $\frac{y^{10} + 1}{y^2}$ 의 값은?

① 4,-1 ② 4,18 ③ 8,-1 ④ 9,-1 ⑤ 4,27

31. 임의의 실수 x, y에 대해서

 $y^{12} + 1 = x_0 + x_1(y - 1) + x_2(y - 1)^2 + x_3(y - 1)^3 + \cdots + x_{12}(y - 1)^{12}$ 이 성립할 때, $x_1 + x_3 + x_5 + x_7 + x_9 + x_{11}$ 의 값은?

① 2^{11} ② 2^{12} ③ 2^{13} ④ 3^{11} ⑤ 3^{12}

- **32.** $f(x) = x^3 3x^2 x + 3$, g(x) = f(f(f(x)))일 때, g(x)를 f(x)로 나는 나머지 R(x)에 대한 다음 설명 중 옳은 것은?

 - R(x)는 0이다.
 R(x)는 일차식이다.
 R(x)의 상수항은 3이다.
 - ⑤ *R*(*x*)의 상수항은 2이다.

33. $-a^2(b-c)-b^2(c-a)-c^2(a-b)$ 을 인수분해했을 때, 각 인수들의 합이 될 수 <u>없는</u> 것은?

① a+b ② 2a-2b ③ 2b-2a

 $\textcircled{4} \ 2b - 2c$ $\textcircled{5} \ 0$

 $oldsymbol{34}$. x에 관한 두 다항식 $f(x),\ g(x)$ 에 대하여, (x+1)f(x)=(x-1)g(x)일 때, 다음 중 f(x)와 g(x)의 최소공배수는?

- ① (x-1)g(x) ② (x+1)g(x) ③ $(x-1)^2g(x)$

① $(x+1)^2 g(x)$ ③ $(x-1)^3 g(x)$

35. 두 다항식 $x^2 - x + p$ 와 $x^3 + x^2 + x + p + 3$ 이 사차식의 최소공배수를 갖도록 p의 값을 정하면?

① -1 ② -2 ③ -3 ④ -4 ⑤ -5