A를 B로 나는 몫을 Q, 나머지를 R라 하고, Q를 B'으로 나는 몫은 Q', 나머지는 R'이라 한다. A를 BB'으로 나는 나머지는? (단, 모든 문자는 자연수이다.)

 $\bigcirc R + R'B$

(4) R

- ② R' + RB
 - (5) R'

(3) RR'

주어진 조건을 식으로 나타내면
$$A = BO + R \cdots$$

$$Q = B'Q' + R' \cdot \cdot \cdot \cdot \cdot \Box$$

$$A = B(B'Q' + R') + R$$

= $(BB')Q' + (R + R'B)$

$$R + R'B$$
가 $A = BB'$ 로 나눈 나머지가 되기 위해서는 $R + R'B < R'$

그런데
$$R \le B - 1$$
, $R' \le B' - 1$ 이므로

$$R + R'B \le (B-1) + (B'-1)B$$

= $BB' - 1 < BB'$

따라서
$$A = BB'$$
으로 나눈 나머지는 $R + R'B$ 이다.

2. 삼각형의 세 변의 길이 a, b, c에 대하여 $\frac{a-b+c}{a+b+c} = \frac{-a-b+c}{a-b-c}$ 일 때, 이 삼각형은 어떤 삼각형인가?

- ① 빗변의 길이가 a인 직각삼각형
- ② 빗변의 길이가 b인 직각삼각형
- ③ 빗변의 길이가 c인 직각삼각형
- ④ a = b 인 이등변삼각형
 ⑤ b = c 인 이등변삼각형

해설
$$\frac{a-b+c}{a+b+c} = \frac{-a-b+c}{a-b-c} \text{ 에서}$$

$$(a-b+c)(a-b-c) = (a+b+c)(-a-b+c)$$

$$(a-b+c)(a-b-c) + (a+b+c)(a+b-c) = 0$$
(좌변)
$$= \{(a-b)+c\}\{(a-b)-c\} + \{(a+b)+c\}\{(a+b)-c\}$$

$$= (a-b)^2 - c^2 + (a+b)^2 - c^2$$

$$= a^2 - 2ab + b^2 - c^2 + a^2 + 2ab + b^2 - c^2$$

$$= 2a^2 + 2b^2 - 2c^2$$
따라서, $2a^2 + 2b^2 - 2c^2 = 0$ 이므로 $a^2 + b^2 = c^2$
그러므로 이 삼각형은 빗변의 길이가 c 인 직각삼각형이다.

3.
$$x^2 - x - 1 = 0$$
 일 때, $x^3 - \frac{1}{x^3}$ 의 값과 $y + \frac{1}{y} = 1$ 일 때, $\frac{y^{10} + 1}{y^2}$ 의 값은?

해설
$$(1) x^2 - x - 1 = 0$$
의 양변을 x 로 나누면
$$x - 1 - \frac{1}{x} = 0$$

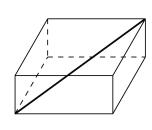
$$\therefore x - \frac{1}{x} = 1$$

$$\therefore x^3 - \frac{1}{x^3} = \left(x - \frac{1}{x}\right)^3 + 3x \cdot \frac{1}{x} \left(x - \frac{1}{x}\right)$$
$$= 1^3 + 3 \cdot 1 \cdot 1 = 4$$
$$(2) y + \frac{1}{y} = 1 일 때$$

$$y + \frac{1}{y} = 1$$
에서 $\frac{y^2 + 1}{y} = 1$

이, ⓒ에서
$$\frac{y^{10}+1}{y^2} = \frac{(y^3)^3 \cdot y + 1}{y^2} = \frac{-y+1}{y^2}$$
$$= \frac{-y^2}{y^2} = -1$$

4. 다음 그림과 같이 대각선의 길이가 3이고 겉넓이가 16, 부피가 6인 직육면체가 있다. 이 직육면체의 가로, 세로, 높이를 각각 a, b, c라할 때, $a^3 + b^3 + c^3$ 의 값은?



① 12 ② 18 ③ 21 ④ 23 ⑤ 30

제설
$$\sqrt{a^2+b^2+c^2}=3,\ abc=6,\ 2(ab+bc+ca)=16$$

$$(a+b+c)^2=a^2+b^2+c^2+2(ab+bc+ca)$$

$$(a+b+c)^2=25,\ a+b+c=5(\because a,b,c 는양수)$$

$$a^3+b^3+c^3-3abc$$

$$=(a+b+c)(a^2+b^2+c^2-ab-bc-ca)\cdots ①$$
 ①에 각각 대입하면
$$a^3+b^3+c^3-18=5\times(9-8)$$

$$a^3+b^3+c^3=23$$

5. x+y+z=0, $x^2+y^2+z^2=4$ 일 때, $x^4+y^4+z^4$ 의 값을 구하여라.

해설
$$(x+y+z)^2 = x^2 + y^2 + z^2 + 2(xy+yz+zx)$$
$$0 = 4 + 2(xy+yz+zx)$$

$$\therefore xy + yz + zx = -2$$

$$(xy + yz + zx)^{2}$$

$$= x^{2}y^{2} + y^{2}z^{2} + z^{2}x^{2} + 2(xy^{2}z + xyz^{2} + x^{2}yz)$$

$$= x^{2}y^{2} + y^{2}z^{2} + z^{2}x^{2} + 2xyz(x + y + z)$$

$$4 = x^{2}y^{2} + y^{2}z^{2} + z^{2}x^{2} + 0$$

$$\therefore x^{2}y^{2} + y^{2}z^{2} + z^{2}x^{2} = 4$$

 $(x^2 + y^2 + z^2)^2 = x^4 + y^4 + z^4 + 2(x^2y^2 + y^2z^2 + z^2x^2)$

$$16 = x^4 + y^4 + z^4 + 2 \cdot 4$$

$$\therefore x^4 + y^4 + z^4 = 8$$

6. 임의의 실수 x, y에 대해서

$$y^{12} + 1 = x_0 + x_1(y - 1) + x_2(y - 1)^2 + x_3(y - 1)^3 + \cdots + x_{12}(y - 1)^{12}$$

- 이 성립할 때, $x_1 + x_3 + x_5 + x_7 + x_9 + x_{11}$ 의 값은?
 - $\bigcirc 2^{11}$ $\bigcirc 2^{12}$ $\bigcirc 3^{13}$ $\bigcirc 4^{311}$ $\bigcirc 3^{12}$

$$y = 2$$
 대입: $2^{12} + 1 = x_0 + x_1 + x_2 + \dots + x_{12}$
 $y = 0$ 대입: $1 = x_0 - x_1 + x_2 - \dots + x_{12}$

각변끼리 빼주면 $2^{12} = 2(x_1 + x_3 + x_5 + \dots + x_{11})$ 이므로 $x_1 + x_3 + x_5 + \dots + x_{11} = 2^{12-1} = 2^{11}$

다머지는?
① x^2-3 ② x^2+x-2 ③ $-x^2-1$ ④ $-x^2+x$ ⑤ x-1

7.

해설
$$x^{2005} + x^5 + x^3 + 1 = (x^3 + x^2 + x + 1)Q(x) + ax^2 + bx + c = (x+1)(x^2+1)Q(x) + ax^2 + bx + c$$
 양변에 $x = -1$ 을 대입하면
$$a - b + c = -2 \cdots \bigcirc$$

$$(x^2)^{1002} \times x + (x^2)^2 \times x + x^2 \times x + 1$$

$$= (x+1)(x^2+1)Qx + ax^2 + bx + c$$
 에서 양변에 $x^2 = -1$ 을 대입하면
$$x + x - x + 1 = -a + bx + c$$

$$x + 1 = bx + c - a$$

$$\therefore b = 1, c - a = 1 \cdots \bigcirc$$

$$\bigcirc, \bigcirc$$
 에서 $a = -1, b = 1, c = 0$

다항식 $x^{2005} + x^5 + x^3 + 1$ 을 삼차식 $x^3 + x^2 + x + 1$ 로 나누었을 때의

해설
$$x^{2005} + x^5 + x^3 + 1$$

$$= (x^3 + x^2 + x + 1)Q(x) + ax^2 + bx + c$$

$$= (x+1)(x^2+1)Q(x) + ax^2 + bx + c$$
 양변에 $x^2 = -1$ 을 대입하면 좌변이 $x+1$ 즉, 좌변의 식을 $x^2 + 1$ 로 나눈 나머지가 $x+1$ 따라서 $ax^2 + bx + c = a(x^2+1) + x + 1$ $x^{2005} + x^5 + x^3 + 1$

 $= (x+1)(x^2+1)Q(x) + a(x^2+1) + x + 1$ $= (x^2+1)\{(x+1)Q(x) + a\} + x + 1$ 양변에 x = -1을 대입하면 -2 = 2a

 \therefore 구하는 나머지는 $-x^2 + x$

∴ a = -1∴구하는 나머지는 $-x^2 + x$ 8. x에 관한 항등식 $x^n(x^2 + ax + b) = (x-2)^2 p(x) + 2^n(x-2)$ 가 성립할 때, a + b의 값을 구하면?

해설
$$x^n(x^2+ax+b)=(x-2)^2p(x)+2^n(x-2)$$
 위의 식에 $x=2$ 를 대입하면, $2^n(4+2a+b)=0$ $\therefore b=-2a-4(2^n\neq 0)\cdots$ ① ①을 준식에 대입하면,
$$x^n(x^2+ax-2a-4)=(x-2)^2p(x)+2^n(x-2)$$
 $x^n(x-2)(x+a+2)=(x-2)^2p(x)+2^n(x-2)$ 위의 식이 항등식이므로 다음 식도 항등식이다.
$$x^n(x+a+2)=(x-2)p(x)+2^n$$
 다시 $x=2$ 를 대입하면,
$$2^n(4+a)=2^n \quad \therefore a=-3$$
 $a=-3$ 을 ①에 대입하면,

b = (-2)(-3) - 4 = 2 $\therefore a = -3, b = 2$ $\therefore a + b = -1$ 9. x에 대한 다항식 $(1+x-x^2)^{10}$ 을 전개하면 $a_0+a_1x+a_2x^2+a_3x^3+\cdots+a_{20}x^{20}$ 이 될 때, $a_0+a_2+a_4+\cdots+a_{20}$ 의 값은? (단, a_i 는 상수이고 $i=0,\ 1,\ 2,\cdots,20$)

(3) 2

(2) $2^{10} - 1$

(5) 0

해설

 2^{10}

10.
$$x^{100}$$
 을 $x+2$ 로 나눈 몫을 $a_{0+}a_1x+a_2x^2+\cdots+a_{99}x^{99}$ 라 할 때, $a_0+a_1+a_2+\cdots+a_{99}$ 의 값을 구하면?

①
$$\frac{1}{5}(1-2^{100})$$
 ② $\frac{1}{6}(1-2^{100})$ ③ $\frac{1}{4}(1-2^{100})$ ③ 1

(i)
$$f(x) = x^{100} = (x+2)Q(x) + R$$
라하면 $f(-2) = 2^{100} = R$

$$\therefore R = 2^{100}$$

$$f(1) = 3Q(1) + R$$

$$\therefore Q(1) = \frac{1}{3}(1-R) = \frac{1}{3}(1-2^{100})$$
(ii) $Q(x) = a_0 + a_1x + \dots + a_{99}x^{99}$

$$\therefore Q(1) = a_0 + a_1 + \dots + a_{99}$$

$$\therefore a_0 + a_1 + \dots + a_{99} = Q(1) = \frac{1}{3}(1-2^{100})$$

해설

11. 10차 다항식
$$P(x)$$
가 $P(k)=\frac{k}{k+1}$ (단, $k=0,1,\ 2,\ \cdots,\ 10)을 만족시킬 때, $P(11)$ 의 값은?$

①
$$\frac{1}{6}$$
 ② $\frac{1}{3}$ ③ $\frac{1}{2}$ ④ $\frac{5}{6}$ ⑤ 1

해설
$$P(k) = \frac{k}{k+1} \Rightarrow (k+1)P(k) - k = 0$$

$$f(x) = (x+1)P(x) - x 라 하면$$

$$f(x) 는 f(0) = f(1) = f(2) = \cdots$$

$$= f(10) = 0 인 다항식이다.$$

$$\begin{array}{c} \therefore \ f(x) = ax(x-1)(x-2)\cdots(x-10) \\ \mathbb{E}, \ f(-1) = 1 = a(-1)(-2)\cdots(-11) \\ = -a \cdot 11!(\mathbb{C}, \ 11! = 1 \times 2 \times \cdots \times 11) \end{array}$$

=
$$-a \cdot 11!$$
(단, $11! = 1 \times 2 \times \cdots \times 11$
∴ $a = -\frac{1}{11!}$

$$f(11) = 12P(11) - 11$$

$$= -\frac{1}{11!} \cdot 11 \cdot 10 \cdot 9 \cdot \dots \cdot 1 = -1$$

$$\therefore P(11) = \frac{10}{12} = \frac{5}{6}$$

12. 다항식 $f_1(x)$ 를 x-1 로 나눈 몫이 $f_2(x)$, 나머지가 r_1 이고 다시 $f_2(x)$ 를 x-1 로 나눈 몫이 $f_3(x)$, 나머지가 r_2 이다. 이와 같은 방법으로 $f_n(x)$ 를 x-1 로 나눈 몫이 $f_{n+1}(x)$, 나머지가 r_n 이고 $f_1(x)$ 를 $(x-1)^n$ 으로 나눈 나머지를 R(x) 라고 할 때, R(x) 를 x-2 로 나눈 나머지는?

(2) 1

 \bigcirc 0

해결

$$f_1(x) = (x-1)f_2(x) + r_1$$

$$= (x-1)\{(x-1)f_3(x) + r_2\} + r_1$$

$$= (x-1)^2f_3(x) + r_2(x-1) + r_1$$

$$= (x-1)^2\{(x-1)f_4(x) + r_3\} + r_2(x-1) + r_1$$

$$= (x-1)^3f_4(x) + r_3(x-1)^2 + r_2(x-1) + r_1$$

$$\vdots$$

$$= (x-1)^nf_{n+1}(x) + r_n(x-1)^{n-1} + r_{n-1}(x-1)^{n-2} + \cdots$$

$$+ r_2(x-1) + r_1$$

$$R(x) = r_n(x-1)^{n-1} + \cdots + r_2(x-1) + r_1$$

$$\therefore R(2) = r_n + r_{n-1} + \cdots + r_2 + r_1$$

13. 두 다항식 f(x), g(x)에 대하여 f(x)+g(x)는 x+2로 나누어 떨어지고, f(x)-g(x)를 x+2로 나누었을 때의 나머지는 4이다. [보기]의 다항식 중 x+2로 나누어 떨어지는 것을 모두 고르면?

①
$$x + f(x)$$
 ⓒ $f(g(x)) - x$ ② ⓒ $f(g(x)) - x$ ③ ② ⓒ ③ ③ ○, ⓒ ④ ④, ⓒ ⑤ ①, ⓒ, ⓒ

①: x²+f(x)g(x) → x = -2를 대입하면 (-2)²+f(-2)g(-2) = 0
 ②: f(g(x)) - x → x = -2를 대입하면 f(g(-2)) - (-2) = f(-2) + 2 = 4

 \bigcirc : $x + f(x) \rightarrow x = -2$ 를 대입하면

-2 + f(-2) = 0

14. 다항식 f(x)를 (x+2)(x-1), x^2+2x+2 로 나눈 나머지가 각각 16, -11x+2라고 한다.이 때, f(x)를 $(x+2)(x-1)(x^2+2x+2)$ 로 나눈 나머지를 R(x)라고 하면 R(0)의 값은?

$$R(x)$$
는 삼차 이하의 다항식이므로
$$R(x) = ax^3 + bx^2 + cx + d$$
라 하면
$$f(x) = (x+2)(x-1)Q_1(x) + 16 \cdots \bigcirc$$

$$f(x) = (x^2 + 2x + 2)Q_2(x) - 11x + 2$$

$$f(x) = (x+2)(x-1)(x^2 + 2x + 2)Q_3(x) + ax^3 + bx^2 + cx + d$$

$$= (x+2)(x-1)(x^2+2x+2)Q_3(x)+(ax+k)(x^2+2x+2)-11x+2$$

$$= (x^2+2x+2)\{(x+2)(x-1)Q_3(x)+ax+k\}$$

$$\bigcirc$$
, 으에서
$$f(1) = 16 = 5(a+k) - 11 + 2$$
$$\therefore a+k = 5 \cdots \bigcirc$$

$$f(-2) = 16 = 2(-2a + k) + 22 + 2$$

$$\therefore -2a + k = -4 \cdots \textcircled{2}$$
 \(\mathbb{C}\), \(\mathbb{C}\) \(\mathbb{A}\) \(d = 3, k = 2\)

따라서
$$R(x) = (3x+2)(x^2+2x+2) - 11x + 2$$

$$\therefore R(0) = 6$$

 $-11x + 2 \cdot \cdot \cdot \cdot \bigcirc$

15. $f(x) = x^3 - 3x^2 - x + 3$, g(x) = f(f(f(x))) 일 때, g(x)를 f(x)로 나눈 나머지 R(x)에 대한 다음 설명 중 옳은 것은?

① R(x)는 0 이다.

해설

② R(x)는 일차식이다.

③ R(x)는 이차식이다.

 $\therefore a = b = c = 0$

- . ④ R(x)의 상수항은 3이다.
- ⑤ *R*(*x*)의 상수항은 2이다.

$$f(x) = (x-3)(x-1)(x+1)$$
이고 $g(x) = f(x)Q(x) + R(x)$ 에서 $g(x) = (x-3)(x-1)(x+1)Q(x) + ax^2 + bx + c$ 그런데 $g(x) = f(f(f(x)))$ 이므로 $g(1) = f(f(f(1))) = f(f(0)) = f(3) = 0$

$$g(1) = a + b + c = 0, \ g(-1) = a - b + c = 0,$$
$$g(3) = 9a + 3b + c = 0$$

g(-1) = f(f(f(-1))) = f(f(0)) = f(3) = 0g(3) = f(f(f(3))) = f(f(0)) = f(3) = 0

따라서 $R(x) = ax^2 + bx + c = 0$

16. a,b 가 양의 정수이고, 다항식 $f(x)=x^4+ax^3+x^2+bx-2$ 이다. f(x) 가 일차식 $x-\alpha$ 를 인수로 갖게 하는 정수 α 의 값과 a,b(a>b) 의 값에 대하여 $\alpha^2+a^2+b^2$ 의 값을 구하여라.

➢ 정답: 9

α가 될 수 있는 상수항 -2의 약수인 ±1, ±2을 준식에 차례로
대입해 보면
$$f(1) = 1 + a + 1 + b - 2 = 0, \ a + b = 0$$
$$f(-1) = 1 - a + 1 - b - 2 = 0, \ a + b = 0$$
$$f(2) = 16 + 8a + 4 + 2b - 2 = 0, \ 4a + b = -9$$
$$f(-2) = 16 - 8a + 4 - 2b - 2 = 0, \ 4a + b = 9$$
그런데, 위의 세 식은 a, b가 양의 정수라는 조건을 충족시키지
못한다.
∴ α = -2 이고 4a + b = 9

 $\alpha = -2, a = 2, b = 1 \ (\because a > b)$

 $\alpha^2 + a^2 + b^2 = 9$

17.
$$\frac{bx(a^2x^2 + 2a^2y^2 + b^2y^2)}{bx + ay} + \frac{ay(a^2x^2 + 2b^2x^2 + b^2y^2)}{bx + ay} \stackrel{\triangle}{=} 간단히 하면?$$
 면?

③
$$(bx + ay)^2$$
 ④ $2(a^2x^2 + b^2y^2)$
⑤ $(ax + by)(bx + ay)$

(1) $a^2x^2 + b^2y^2$

해설
$$(분자) = bx(a^2x^2 + 2a^2y^2 + b^2y^2) + ay(a^2x^2 + 2b^2x^2 + b^2y^2)$$

$$= bx(a^2x^2 + b^2y^2) + 2a^2bxy^2 + ay(a^2x^2 + b^2y^2) + 2ab^2x^2y$$

$$= (a^2x^2 + b^2y^2)(bx + ay) + 2abxy(ay + bx)$$

$$= (bx + ay)(a^2x^2 + 2abxy + b^2y^2)$$

$$= (bx + ay)(ax + by)^2$$
따라서, (준 식) = $(ax + by)^2$

18.
$$(a+b+c)^3-a^3-b^3-c^3$$
을 인수분해 할 때, 다음 중 인수가 아닌 것은?

①
$$a + b$$
 ② $b + c$ ③ $a + c$ ④ $a^2 + ab + bc + ca$

해설
$$(준 \ 4) = \{(a+b+c)^3 - a^3\} - (b^3 + c^3)$$

 $a^2 + 2ab + b^2$

$$= (a+b+c-a)\{(a+b+c)^2 + (a+b+c)a + a^2\}$$
$$-(b+c)(b^2 - bc + c^2)$$
$$= (b+c)(3a^2 + 3ab + 3bc + 3ca)$$

$$= 3(b+c)(a^2+ab+bc+ca)$$

= 3(b+c){a(a+b)+c(a+b)}

= 3(a+b)(b+c)(c+a)

19.
$$a+b+c=0$$
, $abc\neq 0$ 일 때, $\frac{a^2+b^2+c^2}{a^3+b^3+c^3}+\frac{2}{3}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)$ 의 값을 구하여라.

$$\begin{vmatrix} a^3 + b^3 + c^3 - 3abc \\ = (a+b+c)(a^2 + b^2 + c^2 - ab - bc - ca) \\ = 0(\because a+b+c=0) \end{vmatrix}$$

$$c = 0$$

$$=3abc$$

$$\therefore a^3 + b^3 + c^3 = 3abc$$
$$\therefore \left(\stackrel{\text{Z}}{\leftarrow} \stackrel{\lambda}{\rightarrow} \right) = \frac{a^2 + b^2 + c^2}{3abc} + \frac{2}{3} \left(\frac{bc + ca + ab}{abc} \right)$$

 $=\frac{(a+b+c)^2}{3abc}=0$

$$\therefore a^3 + b^3 + c^3 = 3abc$$

$$t=0$$

$$-c^2 - c^2$$

20. x에 대한 세 다항식 f(x), g(x), h(x)가 항등식 (x-1)f(x) = xg(x) = (x+1)h(x)를 만족한다. 이 때, f(x), g(x), h(x)의 최소공배수를 구하면?

①
$$f(x)$$
 ② $xf(x)$ ③ $x(x+1)f(x)$ ④ $(x-1)f(x)$

$$(x+1)(x-1)f(x)$$

해설
$$(x-1)f(x) = xg(x) = (x+1)h(x) 에서$$
① 다항식 $f(x)$ 에 대하여 $x = 0, -1$ 을 대입하면 $f(0) = f(-1) = 0$
② 다항식 $g(x)$ 에 대하여 $x = 1, -1$ 을 대입하면 $g(1) = g(-1) = 0$
③ 다항식 $h(x)$ 에 대하여 $x = 0, 1$ 을 대입하면 $h(0) = h(1) = 0$
①, ②, ③으로부터 $f(x), g(x), h(x)$ 의 최대공약수를 G 라 하면 $f(x) = x(x+1)G, g(x) = (x-1)(x+1)G, h(x) = x(x-1)G$
∴ $f(x), g(x), h(x)$ 의 최소공배수는 $x(x+1)(x-1)G = (x-1)f(x)$

21. 두 다항식 f(x) = (x-1)(x+1)(x+2), $g(x) = 2x^3 - (a+2)x^2 - ax + 2a$ 의 최대공약수가 이차식이다. 상수 a의 값을 구하여라.

ii)
$$(x-1)(x+2)$$
 일 때 $2(-1)^2 - a(-2) - 2a = 0-8 \neq 0$
i), ii) 에서

 $2(-1)^2 - a(-1) - 2a = 0$ ||A|| a = 2 $\therefore g(x) = 2(x-1)(x+1)(x-2)$

i) (x-1)(x+1) 일 때

$$g(x) = 2(x-1)(x+1)(x-2)$$

22. 다음 두 다항식 A, B의 최대공약수가 이차식일 때, 상수 a, b의 값의 곱 ab 를 구하면? $A = x^3 - ax - 2B = x^3 - 2x^2 + bx + 2$

1 (

$$\begin{cases} A = x^3 - ax - 2 \\ B = x^3 - 2x^2 + bx + 2 \end{cases} \Rightarrow \begin{cases} A + B = x(2x^2 - 2x - a + b) \\ A - B = 2x^2 - (a + b)x - 4 \end{cases}$$

$$A, B$$
의 최대공약수는 $A + B, A - B$ 의 최대공약수와 일치하고 $x \vdash A, B$ 의 공약수가 아니다.

$$\therefore 2x^2 - 2x - a + b = 2x^2 - (a+b)x - 4$$

$$\therefore a+b=2, -a+b=-4$$

$$a = 3, b = -1$$

..
$$a = 3$$
, $b = -1$
따라서. $ab = -3$

23. a, b가 정수이고, $P(x) = x^2 + ax + b$ 라 한다. x의 다항식 P(x) 가 $x^4 + 6x^2 + 25$, $3x^4 + 4x^2 + 28x + 5$ 의 공약수일 때, P(3)의 값을 구하여라.

$$x^4 + 6x^2 + 25 = P(x)A(x)$$
 · · · ① 3 $x^4 + 4x^2 + 28x + 5 = P(x)B(x)$ · · · ②라하고,

 $P(x){3A(x) - B(x)} = 14x^2 - 28x + 70$

$$3x^4 + 4x^2 + 28x$$

① $\times 3 - 2$ 하면

$$= 14(x^2 - 2x + 5)$$
 그런데 $P(x) = x^2 + ax + b$ 이므로
$$P(x) = x^2 - 2x + 5 \therefore P(3) = 8$$

24. $f(x) = \left(\frac{1-x}{1+x}\right)^{50}$ 일 때, $f\left(\frac{1+i}{1-i}\right) + f\left(\frac{1-i}{1+i}\right)$ 의 값을 구하시오.

$$\frac{1+i}{1-i} = i, \ \frac{1-i}{1+i} = -i$$

$$\therefore (준식) = \left(\frac{1-i}{1+i}\right)^{50} + \left(\frac{1+i}{1-i}\right)^{50}$$

$$= (-i)^{50} + (i)^{50}$$

$$= (-i)^{2} + (i)^{2}$$

$$= -2$$

25. 자연수 n에 대하여 $f(n) = ni^n$ 을 만족할 때, f(1) + f(2) + + f(100) + f(101) = x + yi이다. 이 때, 실수 x,y에 대하여 y - x의 값은?

$$f(1) + f(2) + \dots + f(100) + f(101)$$

$$= i + 2i^2 + 3i^3 + \dots + 100i^{100} + 101i^{101}$$

$$= i - 2 - 3i + 4 + 5i + \dots + 100 + 101i$$

$$= (-2 + 4 - 6 + 8 + \dots - 98 + 100)$$

$$+ (1 - 3 + 5 - 7 + \dots + 97 - 99 + 101)i$$

(3) 0

② -1

 $= 2 \times 25 + \{(-2) \times 25 + 101\}i$

 $\therefore x = 50, y = 51, y - x = 51 - 50 = 1$

= 50 + 51i

 $\bigcirc -2$

26. 서로 다른 두 복소수 x, y 가 $x^2 - y = i$, $y^2 - x = i$ 를 만족할 때, $x^3 + y^3$ 의 값을 구하시오. (단. $i = \sqrt{-1}$)

① - ② 하면 :
$$(x+y)(x-y) + (x-y) = 0$$
, $(x-y)(x+y+1) = 0$
조건에서 $x \neq y$ 이므로 $x+y=-1$ 이다.
① + ②하면 $x^2+y^2-x-y=2i$
식을 변형하면 $(x+y)^2-2xy-(x+y)=2i$
∴ $xy=1-i$
 $x^3+y^3=(x+y)^3-3xy(x+y)$

 $= (-1)^3 - 3(1-i)(-1)$

= 2 - 3i

 $x^{2} - y = i \cdots 0, \ y^{2} - x = i \cdots 0$

27.

두 복소수
$$\alpha$$
, β 를 $\alpha = (3+4i)^{10} + (3-4i)^{10}$, $\beta = (3+4i)^{10} - (3-4i)^{10}$ 이라 할 때, α 는 $($ 가 $)$ 이고, β 는 $($ 도 $)$ $($ 나 $)$ 이다.

다음 중 (가), (나) 에 알맞은 것을 차례로 적으면?

- ① 양의 실수, 음의 실수
- ② 음의 실수, 양의 실수

③ 실수, 순허수

④ 순허수, 실수

⑤ 순허수, 순허수

해설

$$\alpha = (3+4i)^{10} + (3-4i)^{10}$$
을 직접 계산하기는 어렵다. 따라서 $\overline{\alpha}$ 를 구하여 α 와 $\overline{\alpha}$ 의 관계를 살펴본다.
$$\overline{\alpha} = \overline{(3+4i)^{10} + (3-4i)^{10}}$$
$$= (\overline{3+4i})^{10} + (\overline{3-4i})^{10} \iff \overline{z_1+z_2} = \overline{z_1} + \overline{z_2}$$
$$= (3-4i)^{10} + (3+4i)^{10} \iff \overline{z_1z_2} = \overline{z_1}\overline{z_2}$$
$$= \alpha$$
$$따라서 $\overline{\alpha} = \alpha$ 이므로 α 는 실수이다.
$$\overline{\beta} = \overline{(3+4i)^{10} - (3-4i)^{10}}$$
$$= (\overline{3+4i})^{10} - (\overline{3-4i})^{10} \iff \overline{z_1-z_2} = \overline{z_1}\overline{z_2}$$
$$= (3-4i)^{10} - (3+4i)^{10} \iff \overline{z_1z_2} = \overline{z_1}\overline{z_2}$$
$$= -\beta$$$$

따라서 $\bar{\beta} = -\beta$ 이므로 β 는 순허수이다.

28. 복소수 z = x + yi (단, x, y 는 실수이고, $i = \sqrt{-1}$)에 대하여 $z\overline{z} + z + \overline{z} = 0$ 을 만족시키는 점(x, y)가 좌표평면 위에서 나타내는 도형을 구하면?

③ 직선

② 네 점

$$z = x + yi, \ \overline{z} = x - yi \ \text{에서}$$

$$0 = z\overline{z} + z + \overline{z}$$

$$= (x + yi)(x - yi) + (x + yi) + (x - yi)$$

$$= x^2 + y^2 + 2x$$
따라서, $(x + 1)^2 + y^2 = 1$ 인 원을 나타낸다.

① 두점

29.
$$x = \frac{1}{2}(-1 + \sqrt{3}i)$$
 일 때 $x + \frac{1}{x + \frac{1}{x$

① 0 ② 1 ③ 2
④
$$\frac{1-\sqrt{3}i}{2}$$
 ③ $\frac{-5+\sqrt{3}i}{4}$

해설
$$x = \frac{1}{2}(-1 + \sqrt{3}i) \text{ 에서 } 2x + 1 = \sqrt{3}i$$
이 식의 양변을 제곱하여 정리하면
$$x^2 + x + 1 = 0 \therefore x + \frac{1}{x} = -1$$

$$\therefore (준식) = x + \frac{1}{x + \frac{1}{x - 1}}$$

$$= x + \frac{x - 1}{x^2 - x + 1}$$

$$= x + \frac{x - 1}{-2x}$$

$$= \frac{-2x^2 + x - 1}{-2x}$$

$$= \frac{-2(-x - 1) + x - 1}{-2x}$$

$$= \frac{3x + 1}{-2x}$$

$$= -\frac{3}{2} - \frac{1}{2x}$$

$$= -\frac{3}{2} + \frac{1}{1 - \sqrt{3}i}$$

$$= \frac{-5 + \sqrt{3}i}{4}$$

30.
$$a,b$$
가 -2 , -1 , 0 , 1 , 2 중 하나일 때, 등식 $\frac{\sqrt{a+b}}{\sqrt{a-b}} = -\sqrt{\frac{a+b}{a-b}}$ 를 만족시키는 순서쌍 (a,b) 의 개수는?

$$\frac{\sqrt{a+b}}{\sqrt{a-b}} = -\sqrt{\frac{a+b}{a-b}} \stackrel{\text{=}}{=} 만족시키는 조건은$$
i) $a+b=0$ 이고 $a-b\neq 0$
ii) $a-b<0$ 이고 $a+b>0$
i) 의 경우 $(-2, 2)$ $(2, -2)$ $(-1, 1)$ $(1, -1)$
ii) 의 경우 $(-1, 2)$ $(0, 2)$ $(0, 1)$ $(1, 2)$
 \therefore 모두 8개

31. 세 방정식 $x^2 + 2ax + bc = 0$, $x^2 + 2bx + ca = 0$, $x^2 + 2cx + ab = 0$ 의 근에 대한 다음 설명 중 옳은 것은? (단, a, b, c는 실수)

- ① 세 방정식은 모두 실근을 갖는다.
- ② 세 방정식은 모두 허근을 갖는다.
- ③ 반드시 두 방정식만 실근을 갖는다.
- ④ 반드시 한 방정식만 실근을 갖는다. ⑤ 적어도 하나의 방정식은 실근을 갖는다.

 $\frac{D_1}{A} = a^2 - bc,$ $\frac{D_2}{A} = b^2 - ca,$

세 방정식의 판별식을 각각

 $\frac{D_3}{A} = c^2 - ab$ 라 하면

 $\frac{D_1}{4} + \frac{D_2}{4} + \frac{D_3}{4}$

 $= a^2 + b^2 + c^2 - ab - bc - ca$

 $= \frac{1}{2} \left\{ (a-b)^2 + (b-c)^2 + (c-a)^2 \right\} \ge 0$

따라서, $\frac{D_1}{4}$, $\frac{D_2}{4}$, $\frac{D_3}{4}$ 중 적어도 하나는 0보다 크거나 같다.

곧, 적어도 하나의 방정식은 실근을 갖는다.

32. 정수 a,b에 대하여 삼차방정식 $x^3 + ax^2 + b = 0$ 의 세 근을 α,β,γ 라 할 때, $\alpha^3 + \beta^3 + \gamma^3$ 의 값에 대한 설명으로 옳은 것은?

① 무리수이다.

② 정수가 아닌 유리수이다.

③ 정수이다.

④ 홀수인 자연수이다.

⑤ 짝수인 자연수이다.

근과 계수와의 관계에서

$$\alpha + \beta + \gamma = -a$$
(정수), $\alpha\beta + \beta\gamma + \gamma\alpha = 0$, $\alpha\beta\gamma = -b$

$$\therefore \alpha^2 + \beta^2 + \gamma^2 = (\alpha + \beta + \gamma)^2 - 2(\alpha\beta + \beta\gamma + \gamma\alpha)$$
$$= a^2(\vec{\beta} \cdot \hat{r})$$

$$\alpha^{3} + \beta^{3} + \gamma^{3}$$

$$= (\alpha + \beta + \gamma)\{(\alpha^{2} + \beta^{2} + \gamma^{2}) - (\alpha\beta + \beta\gamma + \gamma\alpha)\} + 3\alpha\beta\gamma$$

$$\alpha^{3} + \beta^{3} + \gamma^{3} = -a(a^{2} - 0) - 3b = -a^{3} - 3b(\stackrel{>}{>} \stackrel{\wedge}{>})$$

그러나 a > 0, b > 0이면

 $\alpha^3 + \beta^3 + \gamma^3$ 은 자연수가 되지는 못한다.

33. 다음 그림과 같이 한 변의 길이가 α 인 정사각형의 네 귀퉁이를 잘라 정8각형을 만들고 그 한 변의 길이를 β 라 하면, α,β 는 이차방정식 $x^2+px+(\sqrt{2}+1)=0$ 의 두 근이 된다고 한다. 다음 중 α , p의 값으로 옳

①
$$\alpha = \sqrt{2}$$
, $p = \sqrt{2} - 1$
② $\alpha = \sqrt{2}$, $p = -\frac{3\sqrt{2}}{2} - 1$

$$3 \quad \alpha = \sqrt{2} + 1, \quad p = -\sqrt{2}$$

$$\alpha = \sqrt{2} + 1, \quad p = -\sqrt{2} - 2$$

$$\circ$$
 $\alpha = \sqrt{2} - 1, \quad p = -\sqrt{2} - 1$

해설
잘라낸 귀퉁이는 빗변의 길이가
$$\beta$$
인 직각이등변삼각형이므로

은 것은?

다른 한 변의 길이는 $\frac{\sqrt{2}}{2}\beta$ 이다.

 $2 \times \frac{\sqrt{2}}{2} \beta + \beta = \alpha$ 이므로

$$2 \times \frac{\alpha}{2} \beta + \beta = \alpha \circ \square = \beta$$
$$\beta = \frac{\alpha}{\sqrt{2} + 1} = (\sqrt{2} - 1)\alpha$$

 α , $\beta = x^2 + px + (\sqrt{2} + 1) = 0$ 의 두 근이므로 $\alpha\beta = (\sqrt{2} - 1)\alpha^2 = \sqrt{2} + 1$ 에서

$$\alpha^2 = \frac{\sqrt{2} + 1}{\sqrt{2} - 1} = (\sqrt{2} + 1)^2$$

 $\alpha > 0$ 이 므로 $\alpha = \sqrt{2} + 1$

:. $p = -(\alpha + \beta) = -\{\alpha + (\sqrt{2} - 1)\alpha\} = -\sqrt{2} - 2$

34. 방정식 $x^2 + x + 1 = 0$ 의 두 근을 α , β 라 하자. 3의 배수가 아닌 정수 n에 대하여 α^n , β^n 을 두 근으로 하는 이차방정식은 $x^2 + (②)x + (④) = 0$ 이다. ③ 와 ⑥ 에 알맞은 수의 합을 구하여라.

해설
$$\alpha, \beta 는 방정식 x^2 + x + 1 = 0 의 두 근이므로$$
$$\alpha^2 + \alpha + 1 = 0, \beta^2 + \beta + 1 = 0$$

$$\therefore \alpha^3 = 1, \ \beta^3 = 1$$

한편, 근과 계수와의 관계에서 $\alpha + \beta = -1, \ \alpha\beta = 1$

$$\bigcirc$$
: $n = 3k + 1(k 는 정수)$ 일 때, $\alpha^n + \beta^n = (\alpha^3)^k \cdot \alpha + (\beta^3)^k \cdot \beta$
= $\alpha + \beta = -1$

①:
$$n = 3k + 2(k \vdash 3)$$
일 때,
 $\alpha^n + \beta^n - (\alpha^3)^k \alpha^2 + (\beta^3)^k \beta^2$

$$\alpha^{n} + \beta^{n} = (\alpha^{3})^{k} \alpha^{2} + (\beta^{3})^{k} \beta^{2}$$
$$= (\alpha + \beta)^{2} - 2\alpha\beta$$

= 1 - 2 = -1

$$\bigcirc$$
, \bigcirc 에서 n 이 3 의 배수가 아니면

$$\alpha^n + \beta^n = -1$$
, $\alpha^n \beta^n = (\alpha \beta)^n = 1$
따라서 α^n , β^n 을 두 근으로 하는 이차방정식은 $x^2 + x + 1 = 0$ \therefore $\textcircled{3} = 1$, $\textcircled{4} = 1$

35. 사차방정식 $x^4 - ax^2 + (a+1) = 0$ 이 서로 다른 두 개의 실근과 두 개의 허근을 갖기 위한 실수 a의 범위는?

- (1) a < -1
 - ② a > 1
- $3 -1 < a < 2(1 \sqrt{2})$
- $4 1 < a < 2(1 + \sqrt{2})$
- (5) $2(1-\sqrt{2}) < a < 2(1+\sqrt{2})$

 $X = x^2$ 으로 놓으면. $X^2 - aX + (a+1) = 0 \cdot \cdot \cdot \cdot \cdot \bigcirc$

주어진 사차방정식이 두 개의 실근과 두 개의 허근을 가지려면 방정식 ○이 양근 하나 음근 하나를 가져야 한다. \therefore (두 근의 곱) = a+1<0

 $\therefore a < -1$

$$< -1$$