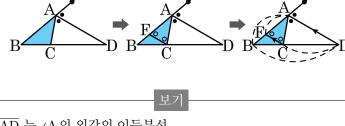
1. 다음은 삼각형의 외각의 이등분선으로 생기는 선분의 비를 구하는 과정이다. 빈칸에 알맞은 말을 차례대로 나열하면?



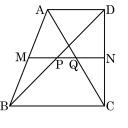
 $\overline{\mathrm{AD}}$ 는 $\angle \mathrm{A}$ 의 외각의 이등분선 $\angle ACF = \bigcirc$ 이므로 $\triangle ACF$ 는 이등변삼각형 $\overline{\mathrm{AD}} /\!/ \overline{\mathrm{FC}}$ 에서 $\overline{\mathrm{AB}} : \overline{\mathrm{AC}} = \overline{\mathrm{BD}} :$ \Box

4 $\angle AFC$, \overline{CD} 5 $\angle AFC$, \overline{AD}

① $\angle ACD$, \overline{BC} ② $\angle ACD$, \overline{CD} ③ $\angle ACD$, \overline{AB}

 $\triangle \mathrm{BDA}$ 에서 $\overline{\mathrm{BA}}:\overline{\mathrm{FA}}=\overline{\mathrm{BD}}:\overline{\mathrm{CD}}$ 이다.

다음 그림의 사다리꼴 ABCD 에서 점 M, N **2**. 은 각각 \overline{AB} , \overline{CD} 의 중점이다. $\overline{AD} + \overline{BC} =$ $32\,\mathrm{cm},\,\overline{\mathrm{MP}}:\overline{\mathrm{PQ}}=3:2$ 일 때, $\overline{\mathrm{PQ}}$ 의 길이 를 구하여라.



▶ 답: ▷ 정답: 4<u>cm</u>

 $\underline{\mathrm{cm}}$

 $\overline{\mathrm{AD}}:\overline{\mathrm{BC}}=\overline{\mathrm{MP}}:\overline{\mathrm{MQ}}=3:5$

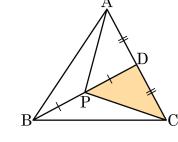
$$\overline{AD} = \frac{3}{8} \times 32 = 12 \text{ (cm)}$$

$$\overline{BC} = \frac{5}{8} \times 32 = 20 \text{ (cm)}$$

$$BC = \frac{1}{8} \times 32 = 20$$
 (cm

$$\overline{PQ} = \frac{1}{2}(20 - 12) = 4 \text{ (cm)}$$

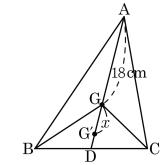
3. 다음 그림의 삼각형에서 \overline{BD} 는 ΔABC 의 중선이고, \overline{BP} = \overline{PD} 이다. $\Delta \mathrm{PDC}$ 의 넓이가 3 일 때, $\Delta \mathrm{ABC}$ 의 넓이를 구하여라.



▶ 답: ▷ 정답: 12

 $\Delta BCD = \frac{1}{2} \Delta ABC \ , \ \Delta PDC = \frac{1}{2} \Delta BCD, \ \Delta PDC = \frac{1}{2} \Delta BCD =$ $\frac{1}{4}$ \triangle ABC = 3이다. 따라서 $\triangle ABC = 12$ 이다.

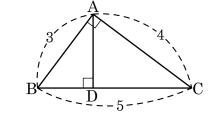
4. 점 G 는 $\triangle ABC$ 의 무게중심이고 점 G'는 $\triangle GBC$ 의 무게중심이다. $\overline{AG}=18\mathrm{cm}$ 일 때, x 를 구하면?



① 3cm ② 6cm ③ 8cm ④ 9cm ⑤ 12cm

 $\overline{GD} = \frac{1}{2}\overline{AG} = 9(cm) , x = \frac{2}{3}\overline{GD} = 6(cm)$

5. 다음 그림의 직각삼각형 ABC 의 꼭짓점 A 에서 빗변 BC 에 내린 수선의 발을 D 라고 할 때, \triangle ABD, \triangle CAD, \triangle CBA 의 넓이의 비는?



① 1:2:3 ④ 5:8:12 ② 2:4:9 ⑤9:16:25

③ 3:5:7

해설

닮음비가 3:4:5 이므로, 넓이의 비는 $3^2:4^2:5^2=9:16:25$

- 6. 다음 중 항상 닮음 도형인 것을 골라라.
 - 및 밑변의 길이가 같은 두 직각삼각형⑤ 중심각의 크기가 같은 두 부채꼴

 - © 한 대응하는 변의 길이가 같은 두 직사각형② 한 대응하는 각의 크기가 같은 두 사다리꼴

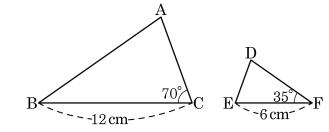
▷ 정답: ⑤

해설

▶ 답:

두 부채꼴이 중심각의 크기가 같으면 확대, 축소했을 때 반지름의 길이와 호의 길이가 일정한 비율로 변하므로 항상 닮음이다.

7. 다음 중 어느 조건을 추가하면 다음 두 삼각형이 닮은 도형이 되는가?



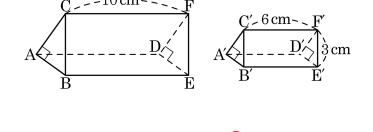
- \bigcirc \angle A = 75°, \angle E = 70° \bigcirc \angle B = 65°, \angle E = 40°
 - ② $\overline{AB} = 9 \text{ cm}, \overline{DF} = 6 \text{ cm}$ ④ $\overline{AC} = 8 \text{ cm}, \overline{DF} = 6 \text{ cm}$
- \bigcirc $\angle B = 75^{\circ}, \overline{DE} = 12 \,\mathrm{cm}$

 $\angle A = 75\,^{\circ}, \, \angle E = 70\,^{\circ}$ 이면

∠B = 35°, ∠D = 75°가 되므로

△ABC∽△DFE (AA 닮음)

다음과 같이 닮음인 두 삼각기둥이 있다. ĒF 의 길이로 가장 적절한 8. 것은?



 \bigcirc 6 cm

45 cm

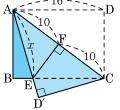
 $\overline{\mathrm{CF}}:\overline{\mathrm{C'F'}}=\overline{\mathrm{EF}}:\overline{\mathrm{E'F'}}$ $10:6=\overline{\mathrm{EF}}:3$

① $2 \, \text{cm}$ ② $3 \, \text{cm}$ ③ $4 \, \text{cm}$

 $\therefore \ \overline{\rm EF} = 5\,{\rm cm}$

해설

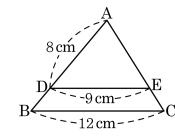
- 다음 그림과 같이 직사각형 모양의 종이를 대 9. 각선 AC 를 접는 선으로 하여 접었다. $\overline{\mathrm{AD}'}$ 와 \overline{BC} 의 교점을 E 라하고 점 E 에서 대각선 AC 에 내린 수선의 발을 F 라고 할 때, x 의 길이는?



 Δ AFE 와 Δ ADC 에서 \angle EFA 와 \angle CDA 는 90° 로 같고, \angle EAF 와

 $\angle {
m CAD}$ 는 접힌 부분이므로 같다. 따라서 두 삼각형은 ${
m AA}$ 닮음이 다. $\triangle AFE$ 와 $\triangle ADC$ 의 닮음비가 10:16 이므로 5:8=x:20이다. $\therefore x = \frac{25}{2}$

10. 다음 그림과 같이 $\triangle ABC$ 에서 $\overline{DE} /\!/ \overline{BC}$ 일 때, \overline{BD} 의 길이는?



- ① $\frac{10}{3}$ cm ② 4cm ④ 3cm ⑤ $\frac{24}{5}$ cm

 $\overline{\mathrm{DE}} : \overline{\mathrm{BC}} = \overline{\mathrm{AD}} : \overline{\mathrm{AB}}$ 이므로 $9 : 12 = 8 : (8 + \overline{\mathrm{DB}})$ $\therefore \overline{\mathrm{DB}} = \frac{8}{3} \; (\mathrm{cm})$

11. $\triangle ABC$ 에서 $\angle BAC$ 의 이등분선은 \overline{AD} -이고, \overline{AB} : \overline{AC} = 4 : 3이다. $\triangle ABD$ =

 $42\,\mathrm{cm}^2$ 일 때, △ACD의 넓이를 구하

여라.



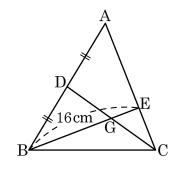
▶ 답:

ightharpoonup 정답: $rac{63}{2}\,\mathrm{cm}^2$

해설

 $\triangle ABC = \triangle ABD + \triangle ACD$ 이코 $\triangle ABD : \triangle ACD = \overline{AB} : \overline{AC} = 4 : 3$ $42 : \triangle ACD = 4 : 3 : \triangle ACD = \frac{63}{2} (\text{cm}^2)$

12. 다음 그림에서 $\overline{AE}:\overline{EC}=2:1$ 이고 $\overline{AD}=\overline{DB},\ \overline{BE}=16\mathrm{cm}$ 일 때, $\overline{\mathrm{GE}}$ 의 길이는?



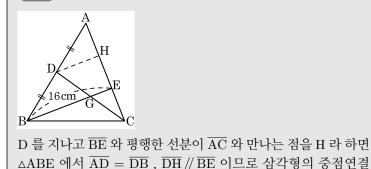
① 4cm

② 5cm

 $\ \ \, 3~6\mathrm{cm}$

 \bigcirc 7cm

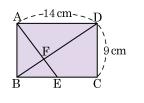
 \bigcirc 8cm



 $\triangle ABE$ 에서 $\overline{AD}=\overline{DB}$, $\overline{DH}/\!\!/\,\overline{BE}$ 이므로 삼각형의 중점연결 정리의 역에 의해 $\overline{AH}=\overline{HE}$, $\overline{DH}=\frac{1}{2}\overline{BE}=8(cm)$

 $\overline{\mathrm{GE}} = rac{1}{2}\overline{\mathrm{DH}} = 4(\mathrm{cm})$ 이다.

 ${f 13.}$ 다음 그림의 직사각형에서 점 ${f E}$ 는 $\overline{f BC}$ 의 중점이다. $\overline{\mathrm{AD}} = 14\,\mathrm{cm},\ \overline{\mathrm{CD}} = 9\,\mathrm{cm}$ 일 때, □FECD 의 넓이를 구하여라.



 $\underline{\mathrm{cm}^2}$ ▶ 답: ightharpoonup 정답: $rac{105}{2}$ $m cm^2$

해설

지도를 그으면 $\Box FECD = \frac{1}{3} \triangle ABC + \frac{1}{4} \Box ABCD$ $= \frac{1}{3} \times 63 + \frac{1}{4} \times 126$ $= 21 + \frac{63}{2}$ $= \frac{105}{2} (\text{cm}^2)$

14. 다음 중 항상 닮은 도형은 몇 개인지 구하여라.

 ③ 두 원
 ⑤ 두 원기둥

 ⑥ 두 직육면체
 億 두 정오각형

 ⑥ 두 직각이등변삼각형
 億 두 원뿔

 ⑥ 두 마름모

 ► 답:
 개

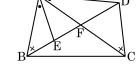
 ▷ 정답:
 3 개

<u>---</u>

항상 닮은 도형은 두 원, 두 정오각형, 직각이등변삼각형 의 3개이다.

해설

15. 다음 그림에서 ∠BAE = ∠CAD , ∠ABE = ∠ACD 일 때, 다음 중 △ABC 와 닮은 도형인 것은?
 ① △ABE ② △ADC ③ △BCF



♠ △AED ⑤ △CDF

(ALD

해설

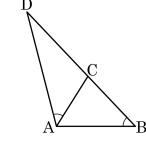
 $\angle ABE = \angle ACD$, $\angle BAE = \angle CAD$ 이므로

 $\triangle ABE \hookrightarrow \triangle ACD (AA 닮음)$ $\triangle ABC 와 \triangle AED 에서 <math>\angle BAC = \angle EAD$, $\overline{AB} : \overline{AE} = \overline{AC} : \overline{AD}$

 $(:: \triangle ABE \hookrightarrow \triangle ACD)$ 이므로 SAS 닮음이다.

∴ △ABC ∽△AED (SAS 닮음)

16. 다음 그림의 $\triangle ABC$ 의 세 변의 길이는 $\overline{AB}=16$, $\overline{BC}=14$, $\overline{CA}=12$ 이다. $\angle DAC=\angle DBA$ 일 때, \overline{DC} 의 길이를 구하여라.



답:

➢ 정답: 18

ΔADC 와 ΔBDA 에서 ∠D 는 공통,

조건에서 ∠DAC = ∠DBA 이므로 △ADC ∽ △BDA (AA 닮음)

△ADC ♡ △BDA (AA 넒음) 따라서 $\overline{\mathrm{AD}}:\overline{\mathrm{BD}}=\overline{\mathrm{DC}}:\overline{\mathrm{DA}}=\overline{\mathrm{AC}}:\overline{\mathrm{BA}}$

 $\overline{AD} : \overline{DC} + 14) = \overline{DC} : \overline{DA} = AC : BA$ $\overline{AD} : (\overline{DC} + 14) = \overline{DC} : \overline{DA} = 12 : 16 = 3 : 4$

 \overline{AD} : $(\overline{DC} + 14) = 3 : 4 \cdots \bigcirc$ \overline{DC} : $\overline{DA} = 3 : 4$

 $3\overline{DA} = 4\overline{DC}$

 $\overline{\mathrm{DA}} = rac{4}{3}\overline{\mathrm{DC}}$ 를 \bigcirc 에 대입하여 계산하면

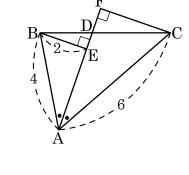
 $\frac{4}{3}\overline{\mathrm{DC}}:(\overline{\mathrm{DC}}+14)=3:4$

 $3\overline{DC} + 14 \times 3 = 4 \times \frac{4}{3}\overline{DC}$

 $9\overline{DC} + 14 \times 9 = 16\overline{DC}$ $7\overline{DC} = 14 \times 9$

 $\therefore \overline{DC} = 18$

17. 다음 그림과 같은 $\triangle ABC$ 에서 \overline{AD} 는 $\angle A$ 의 이등분선이고 점 B, C 에서 $\overline{\mathrm{AD}}$ 또는 그 연장선 위에 내린 수선의 발을 각각 E, F 라고 할 때, $\overline{\mathrm{CF}}$ 의 길이는?



3 4

4 5 **5 6**

ΔABE와 ΔACF는 닮음이다.

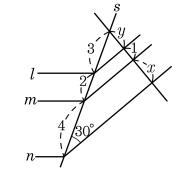
① 2

 $\therefore \ 4:2=6:\overline{\mathrm{CF}}$ $\therefore \overline{CF} = 3$

②3

해설

18. 다음 그림과 같이 서로 평행한 직선 l, m, n이 직선 s와 만나 30°로 일정하게 꺾였다. x, y를 각각 구하여라.



▶ 답:

▶ 답:

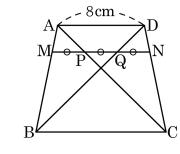
▷ 정답: x = 2

ightharpoonup 정답: $y = \frac{3}{2}$

1: x = 2:4이므로 x = 2

y:1=3:2이므로 $y=rac{3}{2}$

 ${f 19}$. 다음 그림과 같은 사다리꼴 ABCD 에서 $\overline{
m AM}:\overline{
m MB}=\overline{
m DN}:\overline{
m NC}=1:3$ 이다. $\overline{\mathrm{MP}} = \overline{\mathrm{PQ}} = \overline{\mathrm{QN}}$ 일 때, $\overline{\mathrm{BC}}$ 의 길이를 구하여라.



②12cm \bigcirc 9cm

③ 15cm

④ 18cm

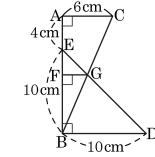
⑤ 21cm

$\overline{AM}:\overline{MB}=\overline{DN}:\overline{NC}=1:3$ 에서 $3:4=\overline{MQ}:8$ 이다.

해설

따라서 $\overline{\mathrm{MQ}}=6$ 이다. $\overline{\mathrm{MQ}} = 2\overline{\mathrm{MP}}$ 이므로 $\overline{\mathrm{MP}} = 3\mathrm{cm}$ 이다. $1:4=3:\overline{\mathrm{BC}}$ 이므로 $\overline{\mathrm{BC}}=12$ 이다.

 ${f 20}.$ 다음 그림에서 $\angle {
m DBF}=\angle {
m EFG}=\angle {
m EAC}=90^{\circ}$, $\overline{
m AC}=6$, $\overline{
m AE}=4$, $\overline{\mathrm{BE}}=10$, $\overline{\mathrm{BD}}=10$ 일 때, $\overline{\mathrm{FG}}$ 의 길이는?



① 1

② 1.5

3 2

4 2.5

 $\overline{\mathrm{FG}}//\overline{\mathrm{BD}}$ 이므로 $\overline{\mathrm{FG}}:\overline{\mathrm{BD}}=\overline{\mathrm{EF}}:\overline{\mathrm{EB}}$

 $\overline{FG}:10=\overline{EF}:10$ $\overline{\mathrm{GF}} = \overline{\mathrm{EF}} = x(\,\mathrm{cm})$ 이므로 $\overline{\mathrm{BF}} = 10 - x(\,\mathrm{cm}),$

 $\overline{\mathrm{AC}}//\overline{\mathrm{FG}}$ 이므로 $\overline{\mathrm{BF}}:\overline{\mathrm{BA}}=\overline{\mathrm{FG}}:\overline{\mathrm{AC}}$ (10 - x) : 14 = x : 6

14x = 6(10 - x)

14x = 60 - 6x

20x = 60

 $\therefore x = 3$

21. 다음 그림과 같이 $\angle B = \angle C$ 인 이등변삼각형 ABC 의 점 A 에서 변 BC에 내린 수선의 발을 M 이라 하고, 삼각형 ABM, ACM의 무게중심을 각각 G, G'이라 할 때, 삼각형 AGG'의 둘레의 길이는 8이다. 이때 삼각형 ADE의 둘레의 길이를 구하여라.

B D M E

 ► 답:

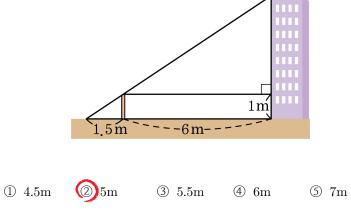
 ▷ 정답:
 12

7 00.

 $\overline{\mathrm{AG}}:\overline{\mathrm{GD}}=2:1$ 이므로 삼각형 AGG' 과 ADE 의 닮음비는

2:3 이다. 따라서 삼각형 ADE 의 둘레의 길이는 $\frac{3}{2} \times 8 = 12$ 이다.

22. 건물의 높이를 알기위해, 건물로부터 6m 떨어진 곳에 1m 길이의 막대기를 수직으로 세웠더니 다음 그림과 같았다. 건물의 높이는 얼마인가? (단, 막대기의 폭은 생각하지 않는다.)



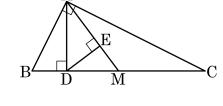
해설

건물의 높이를 xm라 하자.

1.5:1=7.5:x

 $\therefore x = 5$ 따라서 건물의 높이는 5m 이다.

 ${f 23}$. 다음 그림과 같이 $\angle A=90^\circ$ 인 직각삼각형 ABC 에서 $\overline{
m BM}=\overline{
m CM}$ 이고, 점 A 에서 내린 \overline{BC} 에 내린 수선의 발을 D , 점 D 에서 \overline{AM} 에 내린 수선의 발을 E 라 하고, $\overline{\mathrm{BD}}=6,\ \overline{\mathrm{DC}}=24$ 일 때 $\overline{\mathrm{DE}}$ 의 길이를 구하여라.



답:

ightharpoonup 정답: $rac{36}{5}$

조건에서 ∠ADB = 90°, ∠BAD = ∠ACD 이므로 △ABD ∽ △CAD (AA 닮음) 따라서 $\overline{AB}:\overline{CA}=\overline{BD}:\overline{AD}=\overline{AD}:\overline{CD}$ 를 이용하여 \overline{AD} 를

구하면 $6:\overline{\mathrm{AD}}=\overline{\mathrm{AD}}:24$

 $\overline{AD} = 12 \ (\because \overline{AD} > 0)$

 $\angle A$ 가 90° 이므로 $\triangle ABC$ 는 직각삼각형이다. $\triangle ABC$ 의 빗변의

중심 M 은 곧 \triangle ABC 의 외심이므로 $\overline{\mathrm{AM}} = \overline{\mathrm{BM}} = \overline{\mathrm{CM}} = 15$ $\overline{\mathrm{DM}} = \overline{\mathrm{BM}} - \overline{\mathrm{BD}} = 15 - 6 = 9$

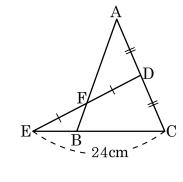
 $\angle AED = 90^{\circ}$, $\angle AMD = \angle ADE$ 이므로 $\triangle ADE$ \bigcirc $\triangle AMD$ (AA

따라서 $\overline{AD}:\overline{AM}=\overline{DE}:\overline{MD}=\overline{AE}:\overline{AD}$ 를 이용하여 \overline{DE} 를 구하면 $12:15 = \overline{DE}:9$ 이므로 $\overline{DE} = \frac{12 \times 9}{15} = \frac{36}{5}$ 이다.

24. 다음 그림에서 ĀE : $\overline{BB} = 3 : 2$, \overline{AF} : $\overline{FC} = 4 : 5$ 이다. $\overline{BC} = 14 \, \mathrm{cm}$ 일 때, \overline{BD} 의 길이를 구하면?

① 10 cm ② 12 cm ③ 14 cm
④ 16 cm ⑤ 18 cm

해설 그림에서와 같이 \overline{DF} 와 평행이 되도록 \overline{BG} 를 그으면, $\overline{AE}:\overline{EB}=\overline{AF}:\overline{FG}=3:2=12:8$ $\overline{AF}:\overline{FC}=4:5=12:15$ 따라서 $\overline{AF}:\overline{FG}:\overline{GC}=12:8:7$ $\overline{DB}:\overline{BC}=8:7$ \therefore $\overline{BD}=$ D ${f 25}$. 다음 그림에서 $\overline{
m AD}=\overline{
m DC},\overline{
m EF}=\overline{
m FD}$ 일 때, $\overline{
m EB}$ 의 길이를 바르게 구한 것은?



3 8 cm 4 9 cm

 \bigcirc 10 cm

다음 그림과 같이 $\overline{\mathrm{GD}}\,/\!/\,\overline{\mathrm{EC}}$ 가 되도록 점 G 를 잡으면 $\Delta \mathrm{GFD} = \Delta \mathrm{BFE}(\mathrm{ASA합동})$ 이므로 $\overline{\mathrm{EB}} = \overline{\mathrm{DG}} \cdots \bigcirc$ 또, $\Delta \mathrm{ABC}$

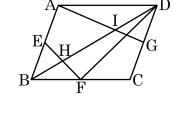
에서 $\overline{\mathrm{DG}} = \frac{1}{2}\overline{\mathrm{BC}}\cdots$ ①,ⓒ에서 $\overline{\mathrm{EB}}=\frac{1}{2}\overline{\mathrm{BC}}$ 이므로 $\overline{\mathrm{BC}}=2\overline{\mathrm{EB}}$

따라서 $\overline{EC} = \overline{EB} + \overline{BC} = \overline{EB} + 2\overline{EB} = 3\overline{EB} = 24$ $\therefore \overline{\mathrm{EB}} = 8 (\,\mathrm{cm})$

 \bigcirc 6 cm

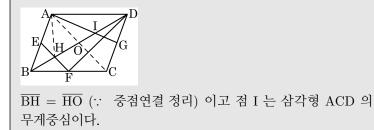
 \bigcirc 7 cm

26. 다음 그림의 평행사변형 ABCD 에서 세 변 AB, BC, CD 의 중점을 각각 E, F, G 라 하고, 선분 EF, AG 와 평행사변형의 대각선 BD 가 만나는 점을 각각 H, I 라 할 때, $\frac{\Delta \text{BEH}}{\Delta \text{ADI}}$ 의 값을 구하여라.



▶ 답:

ightharpoonup 정답: $rac{3}{8}$



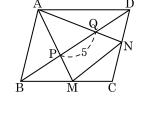
 $\therefore \ \overline{\mathrm{DI}}: \overline{\mathrm{IO}} = 2:1$ $\overline{\mathrm{BO}} = \overline{\mathrm{DO}}$

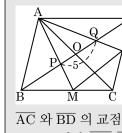
$$\therefore \overline{BH} : \overline{HI} : \overline{ID} = \frac{3}{2} : \frac{3}{2} + 1 : 2 = 3 : 5 : 4$$

 $\triangle BEH = a$ 라 하면

$$\triangle AEH = a$$
, $\triangle ABH = 2a$,
$$\triangle ADI = \frac{4}{3} \times \triangle ABH = \frac{4}{3} \times 2a = \frac{8}{3}a$$
따라서 $\frac{\triangle BEH}{\triangle ADI} = \frac{a}{\frac{8}{3}a} = \frac{3}{8}$ 이다.

- 27. 다음 그림과 같은 평행사변형 ABCD 에서 점 M,N은 각각 $\overline{BC},\overline{DC}$ 의 중점이다. $\overline{PQ}=5$ 일 때, $\overline{\text{MN}}$ 의 길이를 구하면?





 \overline{AC} 와 \overline{BD} 의 교점을 O 라고 하면 $\overline{AO}=\overline{CO}$ 이다. $\triangle ABC$ 에서 $\overline{AM},\overline{BO}$ 는 중선이므로 점P 는 무게중심이므로 $\overline{\mathrm{PO}} = \frac{1}{3}\overline{\mathrm{BO}}$

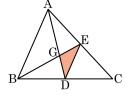
점Q 도 \triangle ACD 의 무게중심이므로 $\overline{\mathrm{QO}} = \frac{1}{3}\overline{\mathrm{DO}}$, $\triangle BCD$ 에서 $\overline{BD}=3\overline{PQ}$, $\overline{BD}=3\times 5=15$

 $\therefore \overline{MN} = \frac{1}{2}\overline{BD} = \frac{15}{2}$

28. 다음 그림의 $\triangle ABC$ 에서 \overline{AD} , \overline{BE} 는 $\triangle ABC$ 의 중선이고 점 G 는 \overline{AD} 와 \overline{BE} 의 교점이다. $\triangle GAB$ 의 넓이가 $44~\mathrm{cm}^2$ 일 때, $\triangle GDE$ 의 넓이를 구하면?

 $\bigcirc 9 \, \mathrm{cm}^2$

 $3 \ 10\,\mathrm{cm}^2$



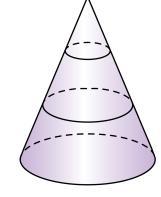
① $8 \, \text{cm}^2$

해설

 $411 \, \text{cm}^2$ $512 \, \text{cm}^2$

 $\triangle GDE : \triangle GAB = 1 : 4$

 $\triangle GDE : 44 = 1 : 4$ $\therefore \triangle GDE = 11 (\text{cm}^2)$ 29. 다음 그림과 같이 부피가 108π 인 원뿔을 모선의 삼등분점을 지나면서 밑면에 평행한 평면으로 잘랐을 때, 잘려진 세 입체도형 중 가운데 부분에 있던 원뿔대의 부피를 구하여라.



▷ 정답: 28π

답:

가장 작은 원뿔의 부피는 원래 원뿔의 부피의 $\frac{1}{27}$ 이므로 $\frac{1}{27}$ ×

 $108\pi=4\pi$ 또 가장 아래쪽에 있는 원뿔대를 뺀 나머지 원뿔의 부피는 원래 원뿔의 부피의 $\frac{8}{27}$ 이므로 $\frac{8}{27} \times 108\pi=32\pi$ 따라서 가운데 원뿔대의 부피는 $32\pi-4\pi=28\pi$ 이다.

- **30.** 축척이 1 : 50000 인 지도상에서의 넓이가 $2 \mathrm{cm}^2$ 라면, 실제 넓이는 얼마인가?
 - ① 0.25km^2 ② 0.5km^2 ③ 0.75km^2 ④ 1km^2
 - 0 -----

해설

축척이 1:50000 이므로 넓이의 비는 $1:25\times10^8$ 따라서 실제 넓이는 $2\times25\times10^8=50\times10^8(\mathrm{cm}^2)=0.5\mathrm{km}^2$ 이다.