- 다음 조건을 만족하는 집합 A 의 원소를 작은 순서로 a_1,a_2,a_3,\cdots,a_n 으로 나타낼 때, $a_2+a_3+a_5$ 의 값을 구하여라. **1.**
 - 집합 A 의 원소는 항상 1 보다 크거나 같다. $a_1=1$, $x \in A$ 이면, $\frac{3}{2} \times x \in A$ 이다.

▶ 답:

ightharpoonup 정답: $rac{141}{16}$

 $a_1=1$ 이면 $a_2=rac{3}{2} imes a_1$ 이고 이러한 방식으로 집합 A 를 구하면, $\{a_1, a_2, a_3, \cdots, a_n\} = \left\{1, \frac{3}{2}, \frac{9}{4}, \frac{27}{8}, \frac{81}{16}, \frac{243}{32}, \cdots, \left(\frac{3}{2}\right)^{(n-1)} \times a_1\right\}$ $a_2 = \frac{3}{2}, a_3 = \frac{9}{4}, a_5 = \frac{81}{16} \text{ ord.}$ $\therefore a_2 + a_3 + a_5 = \frac{141}{16}$

- 2. 집합 $U=\{2,\ 3,\ 5,\ 7,\ 11\}$ 의 부분집합 중 2개의 원소로 이루어진 부분집합 전체를 A_1,A_2,\cdots,A_{10} 이라하고, 집합 A_k 의 원소의 합을 $a_k(k=1,2,\cdots,10)$ 이라 할 때, $a_1+a_2+\cdots+a_{10}$ 의 값은?
 - ① 104 ② 106 ③ 108 ④ 110 ⑤ 112

해설

U는 원소가 5개이므로 2개의 원소로 이루어진 부분집합의 개수는 5개의 원소 중에서 2개를 택하는 방법의 수 $(5\times4)\div2=10$ 과 같다. 따라서, 각 k에 대하여 a_k 는 두 원소의 합이므로 $a_1+a_2+\cdots+a_{10}$ 은 20 개의 원소의 합이다. 이 때, 2,3,5,7,11의 5개의 수가 고르게 포함되므로 5 개의 수가 각각 4 번씩 더해진다. 따라서, $a_1+a_2+\cdots+a_{10}=4\times(2+3+5+7+11)=112$

3. 집합 $A = \{x | x \vdash m$ 보다 작거나 같은 자연수 $\}$ 의 부분집합 중 원소가 2 개 이상인 부분집합을 차례로 $A_1, A_2, A_3, \cdots, A_N$ 이라 할 때, 다음 조건을 만족하는 m 값을 구하여라. (단, S(A) 는 집합 A 의 원소의 총합이다.) $S(A_1) + S(A_2) + S(A_3) + \cdots + S(A_N) = 225$

답:

➢ 정답: 5

해설 $A = \{x | x 는 m 보다 작거나 같은 자연수\} = \{1, 2, 3, \cdots, m\}$ 집합 A 의 모든 부분 집합에 각 원소가 포함되는 횟수는 2^{m-1} (번) 이고, 원소가 1 개 이하인 부분집합에 각 원소가 포함되는 횟수는 1 번이므로, $S(A_1) + S(A_2) + S(A_3) + \cdots + S(A_N) = (2^{m-1} - 1) \times \left(\frac{m(m+1)}{2}\right) = 225$ $225 = 3^2 \times 5^2 \text{ 이고, } 2^{m-1} - 1 \le 255 \text{ 인 범위에서 } 2^{m-1} - 1 \text{ 은 } 5^2 = 25 \text{ 의 배수가 될 수 없으므로,}$ $\frac{m(m+1)}{2} \text{ 은 5 의 배수가 되어야 한다.}$ $\frac{m(m+1)}{2} \text{ 이 5 의 배수가 되도록 작은 수부터 차례로 넣어보면}$

m = 5

전체집합 $U=\{1,2,3,4\}$ 의 두 부분집합이 A,B 일 때, 다음 각 조건을 4. 만족하는 집합의 순서쌍 (A,B) 의 개수를 구하여라.

> $(1) A \cap B = \emptyset$ $(2) A \cup B = U$

<u>개</u> 정답: 16 개

▶ 답:

 $A\cap B=$ Ø 이고 $A\cup B=U$ 이면 n(A)+n(B)=n(U)=4

해설

 $n(A)=0,\ n(B)=4$ 인 경우: 1 개 $n(A)=1,\; n(B)=3$ 인 경우 : 4 개

 $n(A) = 2, \ n(B) = 2$ 인 경우: 6 개

 $n(A)=3,\; n(B)=1$ 인 경우 : 4 개

n(A)=4, n(B)=0 인 경우: 1 개 따라서 순서쌍 (A, B) 의 개수는 1+4+6+4+1=16 (개)

전체집합 $S=\left\{x|x$ 는 10 이하의 자연수 $\right\}$ 의 두 부분집합 A,B 가 있다. $A\cap B=\varnothing$, $B^c=\{1,7,8,9\}$, $S-(A^c\cup B)=\{1,7\}$ 일 때, $n(A\cup B)$ 를 **5.** 구하여라.

▶ 답: ▷ 정답: 8

해설

 $S = \left\{x \mid x$ 는 10이하의 자연수 $\right\} = \{1, 2, 3, \cdots, 10\}$

 $B^c = \{1, 7, 8, 9\}$ 이면 $B = \{2, 3, 4, 5, 6, 10\}$ $S - (A^c \cup B) = S \cap (A^c \cup B)^c$

 $(A^c \cup B)^c = A \cap B^c = A - B$

 $A \cap B = \emptyset$ 이므로 A - B = A따라서 $S - (A^c \cup B) = S \cap A = \{1, 7\}$ $\therefore n(A \cup B) = 8$

6. 전체집합 $U=\{1,2,3,4,5\}$ 의 두 부분집합 A , B 에 대하여 $A\cap\{1,3\}=B$, $B\cup\{2,3,4\}=A$ 일 때, n(A)+n(B) 의 최댓값을 구하여라.

답:

▷ 정답: 6

해설 $B \cup \{2,3,4\} = A$ 이면 $B \subset A$, $\{2,3,4\} \subset A$

 $A\cap\{1,3\}=B$ 이면 $\{3\}\subset B\subset\{1,3\}$ 따라서 B 는 2,4,5 를 원소로 가질 수 없으므로 n(B) 의 최댓값은 2 n(B)=2 일 때, B=1,3 이고, $A\cap\{1,3\}=B$ 에서 $1\in A$ 또, $5\in A$ 라고 가정하면, $B\cup\{2,3,4\}=A$ 에서 $5\in B$ 이어야 하므로 모순 따라서 $5\notin A$, n(A) 의 최댓값은 $A=\{1,2,3,4\}$ 일 때 A 따라서 n(A)+n(B) 의 최댓값은 $A=\{1,2,3,4\}$ 일 때 A

- 집합 P 의 모든 원소의 합을 s(P), 집합 P 의 부분집합을 P₁, P₂, P₃, ···, P_N 으로 정의한다. 두 집합 A = {a₁, a₂, a₃, a₄}, B = {a + 2|a ∈ A} 가 다음과 같은 조건을 만족할 때, 집합 A, B 의 모든 원소의 합을 구하여라.
 - $A \cap B = \emptyset$ • $s(B_1) + s(B_2) + s(B_3) + \dots + s(B_N) = 128$

답:▷ 정답: 24

집합 B 를 원소나열법으로 나타내면 B

 $\{a_1+2,a_2+2,a_3+2,a_4+2\}$, 집합 B 의 모든 부분집합의 원소의 합에서 각 원소는 2^{4-1} 번

나오므로 $s(B_1) + s(B_2) + s(B_3) + \dots + s(B_N) = 2^{4-1} \times (a_1 + a_2 + a_3 + a_3)$

 a₄ + 8) = 128 → a₁ + a₂ + a₃ + a₄ = 8 ,

 또, A ∩ B = Ø 이므로 집합 A, B 의 모든 원소의 합은

 (a₁ + a₂ + a₃ + a₄ + a₅ + a

 $(a_1 + a_2 + a_3 + a_4) + (a_1 + a_2 + a_3 + a_4 + 8) = 24$

자연수를 원소로 하는 세 집합 $A = \{x|2 \le x \le 10\}, B =$ 8. $\{x|5\leq x\leq 12\}$, $C=\{x|9\leq x\leq 15\}$ 에 대하여 $A\odot B=(A\cup B)-(A\cap B)$ 라 할 때, $n((B \odot C) \odot A)$ 의 값을 구하여라.

▶ 답: ▷ 정답: 8

해설

 $A\odot B=(A\cup B)-(A\cap B)$ 이므로, $((B \odot C) \odot A)$

 $= (((B \cup C) - (B \cap C)) \odot A)$

 $= \big(\{5,6,7,8,13,14,15\} \odot \{x|2 \le x \le 10\}\big)$ $= (\{5, 6, 7, 8, 13, 14, 15\} \cup \{x | 2 \le x \le 10\})$

 $-\big(\{5,6,7,8,13,14,15\}\cap\{x|2\leq x\leq 10\}\big)$

 $= \{2, 3, 4, 9, 10, 13, 14, 15\}$ $\therefore n((B \odot C) \odot A) = 8$

- 9. 두 집합 A, B 에 대하여 연산 \triangle 를 $A \triangle B = (A \cup B) (A \cap B)$ 라 정의할 때, 다음 중 성립하지 <u>않는</u> 것은?

 - ③ $A \triangle A = \emptyset$ 이고 $A \triangle \emptyset = A$ 이다.
 - ④ $A \triangle A \triangle A \triangle \cdots \triangle A = \emptyset$ ⑤ $A \triangle B = C$ 이면 $B = A \triangle C$ 이다.

①, ③은 자명하다.

해설

- ② 벤 다이어그램으로 그려 보면 좌, 우변이 모두 같은 그림으로 그려진다. (아래 그림)
- (i) A 가 짝수개 있을 때:
- $(A \triangle A) \triangle (A \triangle A) \triangle \cdots \triangle (A \triangle A)$ $= \emptyset \triangle \emptyset \triangle \cdots \triangle \emptyset = \emptyset$
- (ii) A 가 홀수개 있을 때: $(A \triangle A \triangle \cdots \triangle A) \triangle A = \emptyset \triangle A = A$
- $(A \triangle A) \triangle B = C \ \bigcirc \Box \subseteq A \triangle (A \triangle B) = A \triangle C$ $(A \triangle A) \triangle B = \emptyset \triangle B = B : B = A \triangle C$

10. 집합 $A_n = \left\{x | n \le x < 6n + 5, \ n$ 은 자연수 $\right\}$ 에 대하여 $S(n) = A_1 \cap A_2 \cap \cdots \cap A_n$ 이라고 정의한다. $n(S(n)) \ge 1$ 을 만족하는 n 의 최댓값을 구하여라.

답:

▷ 정답: 10

```
A_1 = \{x | 1 \le x < 11\} ,
A_2 = \{x | 2 \le x < 17\} ,
A_3 = \{x | 3 \le x < 23\} ,
\vdots
A_{10} = \{x | 10 \le x < 65\} ,
A_{11} = \{x | 11 \le x < 71\} ,
따라서 n \ge 11 이 되면 n(S(n)) = 0 이 되므로 n 의 최댓값은 10
```

11. 전체 50 명의 학생 중 A 문제집을 가지고 있는 학생은 30 명, B 문제집을 가지고 있는 학생은 27 명이다. A,B 문제집 중 한 권만을 가지고 있는 학생 수의 최댓값을 p, 최솟값을 q 라고 할 때, p-q 를 구하여라.

▷ 정답: 40명

10_0

▶ 답:

au전체 학생의 집합을 U , A 문제집을 가지고 있는 학생의 집합을 A

, B 문제집을 가지고 있는 학생의 집합을 B 라 두면, A, B 문제집중 한 권만을 가지고 있는 학생의 집합은 $(A \cup B) - (A \cap B)$, n(U) = 50, n(A) = 30, n(B) = 27 이므로, $30 \le n(A \cup B) \le 50, 7 \le n(A \cap B) \le 27$ 따라서, $3 \le n((A \cup B) - (A \cap B)) \le 43$ $\therefore p - q = 43 - 3 = 40$

12. 다음 중 거짓인 명제는? (단 x, y, z, a, b 는 실수이다.)

정사각형이다. ② xy + yz + zx = 1 일 때, $x^2 + y^2 + z^2 \ge 1$

① 둘레의 길이가 일정한 직사각형 중에서 넓이가 최대인 것은

- ③ a, b, c 가 양수일 때, $\frac{b+c}{a} + \frac{c+a}{b} + \frac{a+b}{c} \ge 6$ ④ $a \ge b \ge 0$ 이면 $\sqrt{a} - \sqrt{b} \le \sqrt{a-b}$
- ⑤xy > x + y > 4 이면 x > 2, y > 2

① $a+b \geq 2\sqrt{ab}$ (단, 등호는 a=b일 때 성립)

- ② $x^2 + y^2 + z^2 xy yz zx$
- $= \frac{1}{2} (x y)^2 + (y z)^2 + (z x)^2 \} \ge 0$
- ③ $\frac{b}{a} + \frac{a}{b} \ge 2$, $\frac{c}{b} + \frac{b}{c} \ge 2$, $\frac{a}{c} + \frac{c}{a} \ge 2$ (단, 등호는 a = b = c 일 때 성립)
- 따라서 $\frac{b+c}{a} + \frac{c+a}{b} + \frac{a+b}{c} \ge 6$
- $(\sqrt{a-b})^2 (\sqrt{a} \sqrt{b})^2 = 2\sqrt{a}\sqrt{b} 2b$ $= 2\sqrt{b}(\sqrt{a} \sqrt{b}) \ge 0$
- ⑤ <반례> $x = \frac{3}{2}$, y = 10
- 또는 $x = \frac{5}{4}$, y = 8 등 여러 경우가 있다.

13. x, y는 실수이고 x + y = 2일 때, $4^x + 4^y + 2^{x+1} + 2^{y+1} + 3$ 의 최솟 값은?

① 16

- ② 19 ③ 22 ④ 25 ⑤ 28

 $2^x + 2^y = t$ 라 놓으면 $2^x > 0$, $2^y > 0$ 이므로

해설

 $t = 2^x + 2^y \ge 2\sqrt{2^x \cdot 2^y} = 2\sqrt{2^{x+y}} = 4$

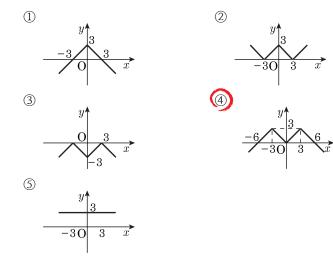
 $\therefore t \ge 4$

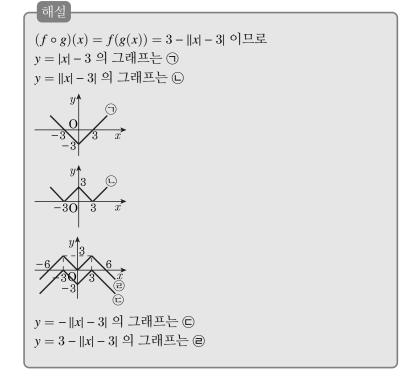
한편 $4^x + 4^y + 2^{x+1} + 2^{y+1} + 3$ $= (2^x + 2^y)^2 + 2(2^x + 2^y) - 5$

 $= t^2 + 2t - 5 = (t+1)^2 - 6$ *t* ≥ 4 이므로

t = 4일 때 최솟값 19를 갖는다.

14. f(x) = 3 - |x|, g(x) = |x| - 3 일 때, 함수 $y = (f \circ g)(x)$ 의 그래프는?





15. 실수 전체집합에서 정의된 함수 $f(x) = \begin{cases} -x^2 & (x < 0) \\ 2x & (x \ge 0) \end{cases}$ 에 대하여 함 수 y = f(x) 의 역함수를 y = g(x) 라 할 때, g(-4) 의 값을 구하여라.

▶ 답:

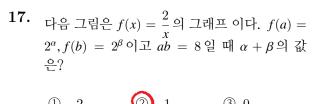
▷ 정답: -2

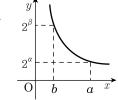
 $f^{-1}(x) = g(x)$ $g(-4) = f^{-1}(-4)$ $f^{-1}(-4) = a$ 이면 f(a) = -4 이다. $\begin{cases}
-a^2 = -4(a < 0) \\
2a = -4(a \ge 0)
\end{cases}$ 따라서 *a* = −2

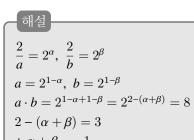
16. |y-x|+|y+x|=2의 그래프로 둘러싸인 도형의 넓이는 ?

① 4 ② 6 ③ 8 ④ 10 ⑤ 12

절댓값의 정의에 의하여 $(i) y - x \ge 0, y + x \ge 0 일 때, y - x + y + x = 2$ $\therefore y = 1$ $(ii) y - x \ge 0, y + x < 0 일 때, y - x - y - x = 2$ $\therefore x = -1$ $(iii) y - x < 0, y + x \ge 0 일 때, -y + x + y + x = 2$ $\therefore x = 1$ (iv) y - x < 0, y + x < 0 일 때, -y + x - y - x = 2 $\therefore y = -1$ $\therefore S = 2 \times 2 = 4$







$$2 - (\alpha + \beta) = 3$$
$$\therefore \alpha + \beta = -1$$

$$\alpha + \beta = -1$$

- 18. 곡선 $y = \sqrt{2x-4}$ 와 직선 y = x+a 가 서로 다른 두 점에서 만나도록 a 값의 범위를 정하면?

는 것은 직선 y = x + a 가 (2, 0) 을 지날 때부터

그림에서 직선이 그래프와 두점에서 만나

직선이 $y = \sqrt{2x-4}$ 의 그래프와 접하기 전까지이다.

i) y = x + a 에 (2, 0) 을 대입하면 a = -2ii) $y = \sqrt{2x-4}$ 와 직선 y = x + a 가 접하기 위해서는

두 식을 연립한 식의 판별식 D=0 이어야 한다. $\sqrt{2x-4} = x + a$

양변을 제곱하여 정리하면 $x^2 + 2x(a-1) + a^2 + 4 = 0$

 $\frac{D}{4} = (a-1)^2 - a^2 - 4 = 0$

-2a - 3 > 0, $a < -\frac{3}{2}$

i) , ii)로 부터 $-2 \le a < -\frac{3}{2}$

- **19.** 곡선 $y = \sqrt{2x-4}$ 와 직선 $y = \frac{1}{2}x + a$ 가 서로 다른 두 점에서 만나도록 a값의 범위를 정하면?
 - ① $-2 \le a < 0$ ② $-1 \le a < 0$ ③ $-2 \le a < -1$

- (4) $-1 \le a < 1$ (5) $0 \le a < 1$

