- 방정식 $x^3 x^2 + ax 1 = 0$ 의 한 근이 -1일 때, 상수 a의 값과 나머지 1. 두 근을 구하면?
 - ① $a = 3, 1 \pm \sqrt{2}$ ③ $a = 3, 1 \pm \sqrt{3}$
- $a = -3, 1 \pm \sqrt{3}$
- ⑤ $a = -1, 1 \pm \sqrt{2}$

x = -1이 근이므로 -1 - 1 - a - 1 = 0에서 a = -3인수정리와 조립제법을 이용하면 (좌변) = $(x+1)(x^2-2x-1) = 0$ $x^2-2x-1 = 0$ 의 근은 $1 \pm \sqrt{2}$

 $\therefore a = -3$, 나머지 근은 $1 \pm \sqrt{2}$

2. x에 대한 삼차방정식 $x^3 + 3x^2 - kx - 5 = 0$ 의 한 근이 -1일 때, 상수 k의 값은?

- ① -5 ② -3 ③ -1 ④ 1
- **⑤**3

해설

 $x^3 + 3x^2 - kx - 5 = 0$ 의 한 근이 -1이므로 x = -1을 대입하면 $(-1)^3 + 3(-1)^2 - k(-1) - 5 = 0$ $\therefore k = 3$

삼차방정식 $2x^3 - 7x^2 + 11x + 13 = 0$ 의 세 근을 α , β , γ 라고 할 때, 3. 다음 (개, (내, 따에 알맞은 값을 차례로 쓴 것은?

(7) $\alpha + \beta + \gamma$ (LI) $\alpha\beta + \beta\gamma + \gamma\alpha$ $(\Box) \ \alpha\beta\gamma$

- - 삼차방정식 $ax^3+bx^2+cx+d=0$ ($a\neq 0$)의 세 근을 $\alpha,\,\beta,\,\gamma$ 라 하면

 $\alpha + \beta + \gamma = -\frac{b}{a}$ $\alpha\beta + \beta\gamma + \gamma\alpha = \frac{c}{a}$ $\alpha\beta\gamma = -\frac{d}{a}$

4. 삼차방정식 $x^3 + x^2 + ax + b = 0$ 의 두 근이 -3, $1 - \sqrt{2}$ 일 때, 유리수 a, b의 합 a + b의 값은?

① -10 ② -5 ③ 0 ④ 5 ⑤ 10

계수가 실수인 삼차방정식의 한 근이 $1-\sqrt{2}$ 이므로 다른 한 근은 $1+\sqrt{2}$ 이다. 따라서, 근과 계수의 관계에 의하여 $a=(1-\sqrt{2})\left(1+\sqrt{2}\right)+(-3)\left(1-\sqrt{2}\right)+(-3)\left(1+\sqrt{2}\right)=-7$

 $a = (1 - \sqrt{2}) \left(1 + \sqrt{2} \right) + (-3) \left(1 - \sqrt{2} \right) + (-3) \left(1 + \sqrt{2} \right) = -3$ $b = -\left(1 - \sqrt{2} \right) \left(1 + \sqrt{2} \right) (-3) = -3$ $\therefore a + b = -10$

.. u + v = 10

- **5.** 다음 중 1+i가 하나의 근이며 중근을 갖는 사차방정식은?
 - ② $(x^2 - 2x + 2)(x - 1)(x + 1)$
 - $(x^2 1)(x^2 2x 1)$
 - $(x^2+1)(x-1)(x+1)$

 - $(x^2+1)(x^2-2x+1)$

한 근이 1+i이면

해설

다른 한 근은 1 - i이다.

 $(x^2 - 2x + 2)(x - \alpha)^2 = 0$:. ① 이 조건에 맞다

- 삼차방정식 x^3 $5x^2+ax+b=0$ 의 한 근이 $1+\sqrt{2}$ 일 때, 다른 두 6. 근을 구하면? (단, a,b는 유리수)

 - $\textcircled{4} \ 1 \sqrt{2} \ , \ -3 \qquad \qquad \textcircled{5} \ -1 + \sqrt{2} \ , \ 3$
 - ① $1 \sqrt{2}$, 2 ② $-1 + \sqrt{2}$, -3 ③ $1 \sqrt{2}$, 3

해설

한 근이 $1+\sqrt{2}$ 이면 다른 한 근은 $1-\sqrt{2}$ 이다.

- 삼차방정식의 근과 계수와의 관계에 의해 세근의 합은 5이므로 $\therefore 1 + \sqrt{2} + (1 - \sqrt{2}) + \alpha = 5, \ \alpha = 3$
- ∴ 다른 두 근은 3,1 √2

- **7.** 삼차방정식 $x^3 + x^2 (k+2)x + k = 0$ 이 중근을 가질 때, k의 값을 구하면?

 - ① -1 ② 0 ③ -1, 3 ④ 0, 3 ⑤ 3

 $x^3 + x^2 - (k+2)x + k = 0$, $(x-1)(x^2 + 2x - k) = 0$ 이 중간 필 가지려면 i) x = 1이 중근일 때,

- 1 + 2 k = 0
- $\therefore k = 3$
- ii) $x^2 + 2x k = 0$ 이 중근이면
- $\frac{D}{4} = 1 + k = 0$
- $\therefore k = -1$

8. 삼차방정식 $x^3 - mx^2 + 24x - 2m + 4 = 0$ 의 한 근이 $4 - 2\sqrt{2}$ 일 때, 유리수 m의 값을 구하여라.

▶ 답:

> 정답: *m* = 10

 $x = 4 - 2\sqrt{2}$ 를 주어진 방정식에 대입하면

해설

 $(4 - 2\sqrt{2})^3 - m(4 - 2\sqrt{2})^2 + 24(4 - 2\sqrt{2}) - 2m + 4 = 0$ 이 식을 정리하면

 $(260 - 26m) - (160 - 16m)\sqrt{2} = 0$ 무리수가 서로 같은 조건에 의하여

260 - 26m = 0 , 160 - 16m = 0

따라서, m=10계수가 유리수인 방정식이므로 $4-2\sqrt{2}$ 가 근이면 $4+2\sqrt{2}$ 도

나머지 한 근을 α 라고 하면 근과 계수와의 관계에서 $(4+2\sqrt{2})+(4-2\sqrt{2})+\alpha=m$ ······

 $(4+2\sqrt{2})(4-2\sqrt{2})\alpha=2m-4 \cdots \bigcirc$

 $\bigcirc \cap \land \land \alpha = m - 8 \quad \cdots \quad \bigcirc$

 \bigcirc 에서 $8\alpha = 2m - 4$ ······ \bigcirc

□을 ②에 대입하면 8(m-8) = 2m-4

 $\therefore m = 10$

근이다.

- 9. 삼차방정식 $x^3 + ax^2 - 8x + 4b = 0$ 이 중근 x = 2를 갖도록 상수 a, b의 값으로 알맞게 짝지어진 것은?
 - ① a = 0, b = 4 ③ a = -2, b = 5
 - ① a = -1, b = 1 ② a = 0, b = 2
- $\bigcirc a = -1, \ b = 3$

해설

삼차방정식이 x=2를 근으로 가지므로 x에 2를 대입하면

8 + 4a - 16 + 4b = 0, a = 2 - b $\therefore x^3 + ax^2 - 8x + 4b = x^3 + (2 - b)x^2 - 8x + 4b$

- $= (x-2) \left\{ x^2 + (4-b)x 2b \right\}$
- 위의 식에서 x = 2가 중근이라고 했으므로 이차식의 하나의 근도 2가 된다. 따라서 이차식에 x=2를 대입하면 0이 되므로
- 4 + 8 2b 2b = 0 $\therefore a = -1, \ b = 3$

- **10.** x에 대한 삼차방정식 $x^3 + (a+2)x^2 + 4ax + 2a^2 = 0$ 이 한 개의 실근과 두 개의 허근을 가질 때, 실수 a의 값의 범위는?
 - ① $a > \frac{1}{2}$ ② $a \ge \frac{1}{2}$ ③ a > 1 ④ $a < \frac{1}{2}$ ⑤ $\frac{1}{2} < a < 1$

방정식 $x^3 + (a+2)x^2 + 4ax + 2a^2 = 0$ 을 조립제법을 이용하여

인수분해하면

 $(x+a)(x^2 + 2x + 2a) = 0$

이 때, 주어진 방정식이 한 개의 실근과 두 개의 허근을 가지려면 $x^2 + 2x + 2a = 0$ 이 허근을 가져야 하므로 $\frac{D}{4} = 1 - 2a < 0 \qquad \therefore \ a > \frac{1}{2}$

- **11.** $x^4 x^3 + x^2 + 2 = 0$ 의 두 근이 1 + i, 1 i일 때, 이 방정식의 나머지 두 근을 구하면?
 - ① $x = -\frac{-1 + -\sqrt{3}i}{2}$ ② $x = \frac{-1 \pm \sqrt{3}i}{2}$
 - ② $x = \frac{1 + -\sqrt{3}i}{2}$ ④ $x = -1 \pm \sqrt{3}i$

 $x^4 - x^3 + x^2 + 2 = 0$ 의 두근이 1 + i, 1 - i이므로 $x^2 - 2x + 2$ 는 $x^4 - x^3 + x^2 + 2$ 의 인수이다. 따라서, $\therefore x^4 - x^3 + x^2 + 2 = (x^2 - 2x + 2)(x^2 + x + 1)$

 $\therefore x^2 + x + 1 = 0$ 일 때의 그은 $\frac{-1 \pm \sqrt{3}i}{2}$

12. 사차방정식 $x^4 + 3x^2 + a = 0$ 의 한 근이 1일 때, 허근은?

① $\pm i$ ② $\pm 2i$ ③ $\pm 3i$ ④ $\pm 4i$ ⑤ $\pm 5i$

해설

한 근이 1이므로 사차방정식 $x^4 + 3x^2 + a = 0$ 에 대입하면 1 + 3 + a = 0, $\therefore a = -4$ 방정식 $x^4 + 3x^2 - 4 = 0$ 에서 $x^2 = t$ 로 치환하면 $t^2 + 3t - 4 = 0$, (t + 4)(t - 1) = 0, $(x^2 + 4)(x^2 - 1) = 0$ $\therefore x = \pm 2i$ 또는 $x = \pm 1$ 따라서, 주어진 방정식의 허근은 $\pm 2i$ 이다.

13. 삼차방정식 $x^3 - 2x^2 + 4x + 3 = 0$ 의 세 근을 α , β , γ 라 할 때, $(1-\alpha)(1-\beta)(1-\gamma)$ 의 값은?

② 4 ① 2

 $\alpha+\beta+\gamma=2$, $lphaeta+eta\gamma+\gammalpha=4$, $lphaeta\gamma=-3$ 이므로

해설

$$(1 - \alpha)(1 - \beta)(1 - \gamma)$$

= 1 - (\alpha + \beta + \gamma) + (\alpha \beta + \beta \gamma + \gamma \beta) - \alpha \beta \gamma

$$= 1 - (\alpha + \beta + \gamma) + = 1 - 2 + 4 + 3 = 6$$

- **14.** 방정식 $x^3 5x^2 + 2x + 1 = 0$ 의 세 근을 α , β , γ 라 할 때, $(1 \alpha)(1 \alpha)$ eta) $(1-\gamma)$ 의 값을 구하면?
 - ① -2

- ③ 0 ④ 1 ⑤ 2

 $\alpha+eta+\gamma=5$, $lphaeta+eta\gamma+\gammalpha=2$, $lphaeta\gamma=-1$ 이므로

해설

 $(1-\alpha)(1-\beta)(1-\gamma)$ $=1+(\alpha\beta+\beta\gamma+\gamma\alpha)-\alpha\beta\gamma-(\alpha+\beta+\gamma)$

= 1 + 2 - (-1) - 5 = -1

- **15.** x에 관한 삼차방정식 $x^3-3x^2+2x+4=0$ 의 세 근을 α,β,γ 라고 할 때 $(1-\alpha)(1-\beta)(1-\gamma)$ 의 값은?
 - ▶ 답:

▷ 정답: 4

해설

 $\alpha + \beta + \gamma = 3$, $\alpha\beta + \beta\gamma + \gamma\alpha = 2$, $\alpha\beta\gamma = -4$ 이므로 $(1 - \alpha)(1 - \beta)(1 - \gamma) = 1 - (\alpha + \beta + \gamma) + (\alpha\beta + \beta\gamma + \gamma\alpha) - \alpha\beta\gamma$ = 1 - 3 + 2 + 4 = 4

16. 삼차방정식 $x^3 - 2x^2 + ax + 6 = 0$ 의 세 근 α, β, γ 사이에 $\alpha + \beta = \gamma$ 인 관계가 성립할 때, a 의 값은?

① -6 ② -5 ③ -2 ④ -1 ⑤ -3

해설 $x^3 - 2x^2 + ax + 6 = 0 \text{ 에서}$ $\alpha + \beta + \gamma = 2 \cdots$ ① $\alpha\beta + \beta\gamma + \gamma\alpha = a \cdots$ ② $\alpha\beta\gamma = -6 \cdots$ ② 문제 조건에서 $\alpha + \beta = \gamma$ 이므로 ③ 에서 $2\gamma = 2$, $\gamma = 1$ ② 에서 $2\gamma = 1$ ② 대입하면, $\alpha\beta = -6$ ②에서 $\alpha\beta + \gamma(\alpha + \beta) = \alpha\beta + \gamma^2 = a$ $\gamma = 1$, $\alpha\beta = -6$ 을 대입하면 -6 + 1 = a $\alpha = -5$

- **17.** x의 삼차방정식 $x^3 + px^2 + qx 105 = 0$ 의 세 근이 모두 2보다 큰 정수일 때, p+q의 값을 구하면?
 - **1** 56

- ② 21 ③ 10 ④ -10 ⑤ -21

해설

세 근을 α , β , γ 라 하면 근과 계수와의 관계에 의해서 $\alpha + \beta + \gamma = -p$, $\alpha\beta + \beta\gamma + \gamma\alpha = q$, $\alpha\beta\gamma = 105$ 마지막 식에서 $\alpha\beta\gamma=3\cdot5\cdot7$

∴ 세 근은 3, 5, 7 이다.

- p = -(3+5+7) = -15,
- $q = 3 \cdot 5 + 5 \cdot 7 + 7 \cdot 3 = 15 + 35 + 21 = 71$ $\therefore p + q = 56$

- **18.** 삼차방정식 $x^3+x^2+2x-3=0$ 의 세 근 α , β , γ 에 대하여 $\alpha+\beta+\gamma$, $\alpha \beta + \beta \gamma + \gamma \alpha$, $\alpha \beta \gamma$ 를 세 근으로 갖는 삼차방정식이 $x^3 + ax^2 + bx + c = 0$ 일 때, a - 2b + c의 값은?
 - ① -3 ② -2 ③ -1 ④ ① ⑤ 1

 $x^3+x^2+2x-3=0$ 의 세 근이 $lpha,\ eta,\ \gamma$ 라 하면 $\alpha+\beta+\gamma=-1$, $\alpha\beta+\beta\gamma+\gamma\alpha=2$, $\alpha\beta\gamma=3$ 구하려는 방정식의 세 근의 합 -1 + 2 + 3 = 4 : a = -4

 $(-1) \times 2 + 2 \times 3 + (-1) \times 3 = -2 + 6 - 3 = 1$: b = 1세 근의 곱 $(-1) \times 2 \times 3 = -6$ $\therefore c = 6$

해설

 $\therefore a - 2b + c = -4 - 2 + 6 = 0$

- **19.** 방정식 $2x^3-3x^2+6=0$ 의 세 근을 α , β , r라 할 때, $(\sqrt{2}-\alpha)(\sqrt{2}-\beta)(\sqrt{2}-r)$ 의 값은?
 - ① $\sqrt{2}$ ② $2\sqrt{2}$ ③ $3\sqrt{2}$ ④ $4\sqrt{2}$ ⑤ $5\sqrt{2}$

 $2x^3 - 3x^2 + 6 = 0$ 의 세 근이

 α, β, r 이므로

해설

 $2x^3 - 3x^2 + 6 = 2(x - \alpha)(x - \beta)(x - r)$ 양변에 $\sqrt{2}$ 를 대입하면

 $4\sqrt{2}-6+6$

 $=2(\sqrt{2}-\alpha)(\sqrt{2}-\beta)(\sqrt{2}-r)$

 $\therefore (\sqrt{2} - \alpha)(\sqrt{2} - \beta)(\sqrt{2} - r) = 2\sqrt{2}$

20. 삼차방정식 $x^3+3x^2-2x-1=0$ 의 세 근을 α,β,γ 라 할 때, $\frac{1}{\alpha},\frac{1}{\beta},\frac{1}{\gamma}$ 을 세 근으로 하는 x의 삼차방정식은 $x^3 + ax^2 + bx + c = 0$ 이다. 이 때, a+b+c의 값은?

 $\bigcirc -2$ ② -1 ③ 0 ④ 1 ⑤ 2

 $x^3 + 3x^2 - 2x - 1 = 0 \, \text{and}$

 $\alpha + \beta + \gamma = -3$ $\alpha\beta + \beta\gamma + \gamma\alpha = -2$ $\alpha\beta\gamma=1$

 $x^3 + ax^2 + bc + c = 0$

 $-a = \frac{1}{\alpha} + \frac{1}{\beta} + \frac{1}{\gamma}$ $= \frac{\alpha\beta + \beta\gamma + \gamma\alpha}{\alpha\beta\gamma}$ $= \frac{-2}{1} = -2$

 $b = \frac{1}{\alpha} \cdot \frac{1}{\beta} + \frac{1}{\beta} \cdot \frac{1}{\gamma} + \frac{1}{\gamma} \cdot \frac{1}{\alpha}$ $= \frac{\alpha + \beta + \gamma}{\alpha \beta \gamma} = \frac{-3}{1} = -3$ $\therefore b = -3$ $-c = \frac{1}{\alpha} \cdot \frac{1}{\beta} \cdot \frac{1}{\gamma} = \frac{1}{\alpha\beta\gamma} = 1$

 $\therefore a+b+c=-2$

21. a,b가 실수이고 방정식 $x^3 + ax^2 - 4x + b = 0$ 의 한 근이 1 + i일 때, *a* + *b* 의 값은?

② 8 ③ 9 ④ 10 ⑤ 11

해설 계수가 실수이므로 1+i가 근이면 1-i도 근이다. 다른 한 근을

lpha라고 하면삼차방정식의 근과 계수와의 관계에 의해 $(1+i)+(1-i)+\alpha=-a\cdots \textcircled{1}$

 $(1+i)(1-i) + (1+i)\alpha + (1-i)\alpha = -4 \cdots ②$ $(1+i)(1-i)\alpha = -b\cdots \Im$

②에서 $\alpha = -3$

①, ③에 각각 대입하면 a=1,b=6

 $\therefore a + b = 7$

해설

따라서 주어진 방정식의 좌변은 $\{x-(1-i)\}\{x-(1+i)\}$ $x^2 - 2x + 2$ 로 나누어 떨어진다. 실제로 나눗셈을 하여 정리하면 $x^3 + ax^2 - 4x + b = (x^2 - 2x + 2)(x + a + 2) + (2a - 2)x + b - 2a - 4$ $\therefore 2a - 2 = 0, \ b - 2a - 4 = 0$ a = 1, b = 6주어진 방정식에 1+i를 대입하여 복소수의 상등을 이용해도 된다.

22. a, b가 실수일 때, 방정식 $x^3 + ax^2 - 4x + b = 0$ 의 한 근이 1 + i 이면 a+b의 값은?

② 8 ③ 9 ④ 10 ⑤ 11

계수가 실수이므로 1+i가 근이면 1-i도 근이다. 나머지 한 근을

 α 라 하면 $(1+i) + (1-i) + \alpha = -a$

 $\therefore 2 + \alpha = -a \cdots \textcircled{1}$

 $(1+i)(1-i) + (1-i)\alpha + (1+i)\alpha = -4$

 $\therefore 2 + 2\alpha = -4 \cdots ②$

 $(1+i)(1-i)\alpha = -b$ $\therefore 2\alpha = -b \cdots \Im$

①, ②, ③에서 $\alpha = -3$, a = 1, b = 6

 $\therefore a+b=7$

23. 삼차방정식 $2x^3 + px^2 + qx - 5 = 0$ 의 한 근이 1 - 2i 일 때 p + q 의 값은?(단, p, q 는 실수)

①7 ② -7 ③ 6 ④ -6 ⑤ 11

한 근이 1-2i이므로 다른 두 근을 $1+2i, \alpha$ 라 하면 세 근의 곱: $(1 - 2i)(1 + 2i)\alpha = \frac{5}{2}$ $\therefore \ \alpha = \frac{1}{2}$

세 근의 합: $-\frac{p}{2} = (1-2i) + (1+2i) + \frac{1}{2} = \frac{5}{2}$

두근끼리 곱의 합 : $\frac{q}{2}=(1-2i)(1+2i)+(1-2i+1+2i)\cdot\frac{1}{2}=6$

 $\therefore q = 12$ $\therefore p+q=7$

한 근이 1 - 2i 이므로 다른 한 근은 1 + 2i

근과 계수의 관계에서 $x^2 - 2x + 5 = 0$ 나머지 일차식을 2x + a 라고 하면

 $2x^3 + px^2 + qx - 5 = (2x + a)(x^2 - 2x + 5)$ 에서 a = -1 이므로 대입하여 정리하면

 $p = -5, \ q = 12$ $\therefore p+q=7$

- ${f 24}$. 방정식 $x^3+x^2+px+q=0$ 에 대하여 한 근이 1-i 일 때, p+q 값을 구하면?
- ① -3 ② -1 ③ 0 ④ 1
- \bigcirc 2

한 근이 1 - *i* 이므로

해설

켤레복소수인 1+i 도 근이 된다. 나머지 한 근을 α 라 하면 근과 계수와의 관계에 의해

 $-1 = (1 - i) + (1 + i) + \alpha : \alpha = -3$ p = (1 - i)(1 + i) - 3(1 - i) - 3(1 + i)

- $\therefore p = -4$
- $-q = (1-i)(1+i) \cdot (-3) = -6$
- $\therefore q = 6$
- p + q = -4 + 6 = 2

25. 방정식 $x^3 - ax^2 + bx - 4 = 0$ 의 한 근이 1 + i 일 때, 실수 a + b 의 값을 구하여라.

▶ 답:

▷ 정답: 10

해설

실수 계수의 방정식에서 1+i 가 근이면 1-i 도 근이다. 이들을 두 근으로 하는 이차방정식은 $x^2-2x+2=0$ 이다. 따라서

 $x^3 - ax^2 + bx - 4$ 는 $x^2 - 2x + 2$ 로 나누어 떨어진다. 실제로 나누어 나머지를 구하면(b - 2a + 2)x + (-8 + 2a)이다. $\therefore b - 2a + 2 = 0$ 과 -8 + 2a = 0에서 a = 4, b = 6이다. $\therefore a + b = 4 + 6 = 10$

26. a, b가 유리수일 때, $x = 1 + \sqrt{2}$ 가 $x^3 - 3x^2 + ax + b = 0$ 의 근이 된다.이 때, $a^2 + b^2$ 의 값을 구하여라.

답:

▷ 정답: 2

-해설 유리계수 방정식이므로 $1+\sqrt{2}$ 가 근이면 $1-\sqrt{2}$ 도 근이다.

주어진 방정식의 세 근을 $1+\sqrt{2},\,1-\sqrt{2},\,\alpha$ 라 하면 $(1+\sqrt{2})+(1-\sqrt{2})+\alpha=3\quad\cdots\cdots$ ① $(1+\sqrt{2})(1-\sqrt{2})+\alpha(1+\sqrt{2})+\alpha(1-\sqrt{2})=a\cdots\cdots$ ⑥ $\alpha(1+\sqrt{2})(1-\sqrt{2})=-b\quad\cdots\cdots$ ⑥ ①, ⑥, ⑥을 연립하여 풀면 $a=1,\,b=1$

27. 삼차방정식 $x^3 - ax - b = 0$ 의 한 근이 $1 - \sqrt{2}$ 일 때, 유리수 a, b에 대하여 a + b의 값을 구하여라.

▶ 답:

➢ 정답: 7

방정식 $x^3 - ax - b = 0$ 의 계수가 유리수이므로 세 그은 1 – $\sqrt{2}$ 1 $\pm \sqrt{2}$ 요라고 하며

세 군을 $1 - \sqrt{2}$, $1 + \sqrt{2}$, α 라고 하면 $\left(1 - \sqrt{2}\right) + \left(1 + \sqrt{2}\right) + \alpha = 0$ ··· ⑤ $\left(1 - \sqrt{2}\right) \left(1 + \sqrt{2}\right) + \left(1 + \sqrt{2}\right) \alpha + \left(1 - \sqrt{2}\right) \alpha = -a$ ··· ⓒ $\left(1 - \sqrt{2}\right) \left(1 + \sqrt{2}\right) \alpha = b$ ··· ⓒ

①에서 $\alpha = -2$ 를 ⓒ에 대입하면 $-a = 1 - 2 - 2 - 2\sqrt{2} - 2 + 2\sqrt{2} = -5 \quad \therefore \ a = 5$

 $\alpha=-2$ 를 ⓒ에 대입하면 $b=-2(1-\sqrt{2})(1+\sqrt{2})=2$ ∴ a+b=5+2=7