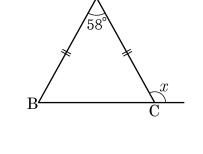
1. 다음 그림과 같이 $\overline{AB}=\overline{AC}$ 인 이등변삼각형 ABC 에서 $\angle A=58^\circ$ 일 때, $\angle x$ 의 크기는?



②119° ③ 120° ④ 121°

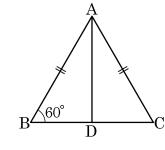
⑤ 122°

 $\triangle ABC$ 는 이등변삼각형이므로 $\angle ACB = \frac{1}{2}(180^{\circ} - 58^{\circ}) = 61^{\circ}$

① 118°

 $\therefore \angle x = 180^{\circ} - 61^{\circ} = 119^{\circ}$

2. 다음 그림의 $\triangle ABC$ 에서, $\overline{AB}=\overline{AC},\ B=60\,^{\circ}$ 이고, 꼭지각의 이등분 선이 밑변과 만나는 점을 D라고 할 때, $\angle BAD$ 의 크기는?



해설

② 45° ③ 60°

4 85°

⑤ 90°

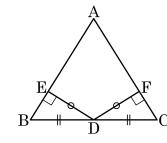
△ABC에서

①30°

 $\overline{AB} = \overline{AC}$ 이므로 이등변삼각형이고, $\angle C = 60$ °이다.

또한, $\angle A = 180^\circ - (60^\circ + 60^\circ) = 60^\circ$ 이다. 따라서 $\triangle ABC$ 는 정삼각형이고 $\angle BAD$ 는 $\angle A$ 를 이등분한 각이 므로 $\angle BAD = 30^\circ$ 이다.

다음 그림과 같은 △ABC 에서 ∠FDC = 32° 일 때, ∠A 의 크기는 ? 3.



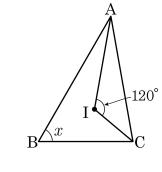
① 52° ② 56° ③ 58°

④ 62°

 $\Delta \mathrm{EBD} \equiv \Delta \mathrm{FCD}(\mathrm{RHS}$ 합동)

 $\angle EBD = \angle FCD = 58^{\circ}$ $\therefore \angle A = 180^{\circ} - 58^{\circ} \times 2 = 64^{\circ}$

4. 다음 그림에서 점 I가 $\triangle ABC$ 의 내심일 때 $\angle x$ 의 크기를 구하여라.

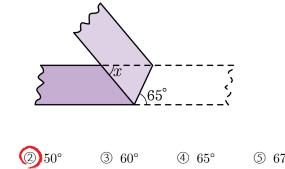


▶ 답:

▷ 정답: 60°

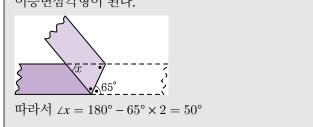
 $\frac{x}{2} + 90^{\circ} = 120^{\circ},$ $\frac{x}{2} = 30^{\circ}$ $\therefore x = 60^{\circ}$

5. 종이 띠를 다음 그림과 같이 접었을 때, $\angle x$ 의 크기를 구하여라.

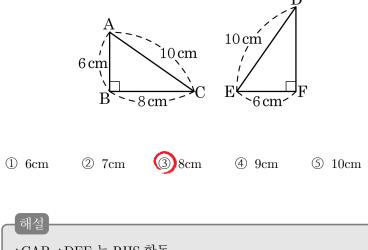


① 40° ② 50° ③ 60° ④ 65° ⑤ 67°

다음 그림과 같이 겹친 부분과 엇각의 크기는 모두 같으므로 이등변삼각형이 된다.

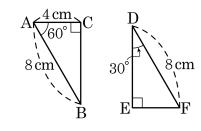


6. 두 직각삼각형 ABC, DEF 가 다음 그림과 같을 때, $\overline{\rm DF}$ 의 길이는?



△CAB, △DEF 는 RHS 합동
∴ $\overline{\mathrm{DF}} = \overline{\mathrm{CB}} = 8\mathrm{cm}$

7. 두 직각삼각형 ABC, DEF 가 다음 그림과 같을 때, $\overline{\text{EF}}$ 의 길이는?

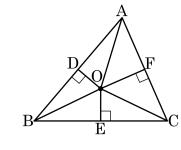


- ① 5cm ④ 3.5cm
- ② 4.5cm
- ⑤ 3cm

해설 $\triangle ABC$, $\triangle FDE$ 는 RHA 합동

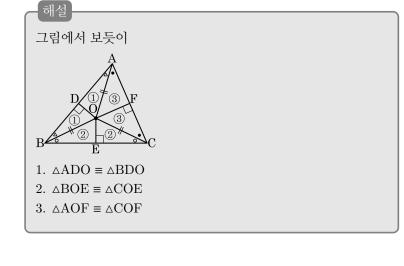
 $\therefore \overline{\mathrm{EF}} = \overline{\mathrm{CA}} = 4\mathrm{cm}$

8. 다음 그림에서 점 O 는 \triangle ABC 의 외심이다. 다음 중 옳지 <u>않은</u> 것은?

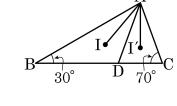


- ① $\angle OAD = \angle OBD$ ③ $\overline{AD} = \overline{BD}$
- $\boxed{4} \triangle OCF \equiv \triangle OCE$

② $\triangle OAD \equiv \triangle OBD$



9. 다음 그림에서 점 I, I' 는 각각 \triangle ABD, \triangle ADC 의 내심이다. \angle B = 30°, \angle C = 70° 일 때, \angle IAI' 의 크기를 구하여라.



 답:

 ▷ 정답: 40_

_

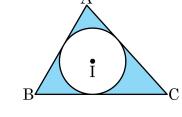
 $\angle \mathrm{BAI} = \angle \mathrm{IAD}, \angle \mathrm{DAI'} = \angle \mathrm{CAI'}$

해설

∠A = 2∠BAI + 2∠DAI′ △ABC 에서 ∠A = 80°이므로

 $\triangle ABC$ 에서 $\angle A = 80$ °이므로 $\angle IAI' = \angle BAI + \angle DAI' = \frac{1}{2}\angle A = 40$ °

10. 다음 그림에서 원 I 는 $\triangle ABC$ 의 내접원이다. 원 I 의 둘레의 길이가 6π , $\triangle {
m ABC}$ 의 둘레의 길이가 32 일 때, 색칠한 부분의 넓이는?



① $48 - 9\pi$ ② $9\pi - 24$

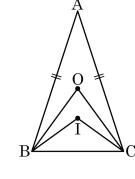
③ $24 - 6\pi$

(4) $42 - 6\pi$ (5) $52 - 9\pi$

원 I 의 둘레의 길이가 6π 이므로 반지름의 길이 r=3 이다. 점 I 가 $\triangle ABC$ 의 내심일 때, ($\triangle ABC$ 의 넓이) = $\frac{1}{2} \times r \times \triangle ABC$ 의 둘레= $\frac{1}{2} \times 3 \times 32 = 48$

따라서 색칠한 부분의 넓이는 (ΔABC 의 넓이) - (원 I 의 넓 이) = $48 - 9\pi$ 이다.

11. 다음 그림에서 $2\angle A=\angle B$, $\overline{AB}=\overline{AC}$ 이고 점 I 는 $\triangle ABC$ 의 내심, 점 O 는 외심일 때, $\angle OBI$ 의 크기를 구하여라.



➢ 정답: 18 º

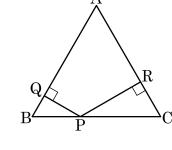
▶ 답:

 $2\angle A=\angle B$ 이코 $\overline{AB}=\overline{AC}$ 이므로 $5\angle A=180^\circ$, $\angle A=36^\circ$ 이다.

 \triangle ABC 의 외심이 점 O 일 때, $\frac{1}{2}$ \angle BOC = \angle A 이므로 \angle BOC = 72° 이다. \triangle ABC 의 내심이 점 I 일 때, $\frac{1}{2}$ \angle A + 90° = \angle BIC 이므로 \angle BIC =

또, $\angle IBC = \frac{1}{2} \angle ABC = \frac{1}{2} \times 72^\circ = 36^\circ$ 이다. 따라서 $\angle OBI = \angle OBC - \angle IBC = 54^\circ - 36^\circ = 18^\circ$ 이다.

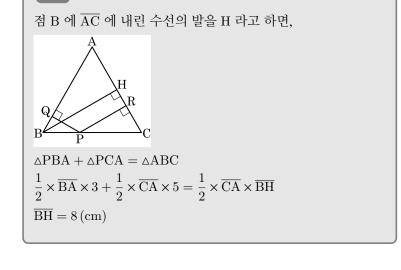
12. 다음 그림과 같이 $\overline{AB}=\overline{AC}$ 인 $\triangle ABC$ 에서 밑변 BC 위의 한 점 P에서 \overline{AB} , \overline{AC} 에 내린 수선의 발을 각각 Q, R 이라 한다. $\overline{PQ}=3cm$, $\overline{PR}=5cm$ 일 때, 점 B에서 \overline{AC} 에 이르는 거리를 구하여라.



 $\underline{\mathrm{cm}}$

정답: 8 <u>cm</u>

▶ 답:

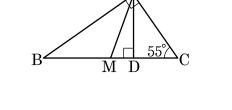


13. 어떤 직각삼각형 ABC의 외접원의 원의 넓이가 $36\pi~{
m cm}^2$ 이라고 할때, 이 직각삼각형의 빗변의 길이는?

① 4cm ② 6 cm ③ 9cm ④ 12cm ⑤ 18cm

해설 직각삼각형의 외심은 빗변의 중심에 위치하므로

ΔABC의 외접원의 중심은 빗변의 중점이다. 외접원의 넓이가 36πcm² 이므로 반지름의 길이는 6cm이다. 따라서 이 삼각형의 빗변의 길이는 외접원의 지름의 길이와 같 으므로 12cm이다. 14. 다음 그림과 같이 직각삼각형 ABC 의 직각인 꼭짓점 A 에서 빗변 BC 에 내린 수선의 발을 D 라 하고, \overline{BC} 의 중점을 M 이라 하자. $\angle C = 55^\circ$ 일 때, ∠AMB – ∠DAM 의 크기는?



① 70° ② 75° ③ 80°

 485°

직각삼각형의 빗변 $\overline{\mathrm{BC}}$ 의 중점 M 은 $\triangle\mathrm{ABC}$ 의 외심이다. $\therefore \overline{\mathrm{BM}} = \overline{\mathrm{AM}} = \overline{\mathrm{CM}}$

∠ABM = 35°, ∠DAC = 35°이고 △ABM 은 이등변삼각형(∵

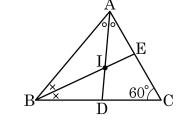
 $\overline{\mathrm{BM}} = \overline{\mathrm{AM}}$ ∴ $\angle ABM = \angle BAM = 35^{\circ}$

 $\angle AMB = 180^{\circ} - 35^{\circ} - 35^{\circ} = 110^{\circ}$

 $\angle DAM = \angle A - \angle BAM - \angle DAC = 90^{\circ} - 35^{\circ} - 35^{\circ} = 20^{\circ}$

따라서 $\angle AMB - \angle DAM = 110^{\circ} - 20^{\circ} = 90^{\circ}$

15. 다음 그림에서 점 I는 $\triangle ABC$ 의 내심이다. $\angle C=60\,^{\circ}$ 일 때, $\angle ADB$ 와 $\angle AEB$ 의 크기의 합은? (단, \overline{AD} 와 \overline{BE} 는 각각 $\angle A$ 와 $\angle B$ 의 내각의 이등분선이다.)



③ 160°

④ 140° ⑤ 120°

△ABC에서 세 내각의 합이 180°이므로 $2 \circ +2 \times +60^{\circ} = 180^{\circ}$ $\circ + \times = 60^{\circ}$ 삼각형의 세 내각의 합은 180°이므로 $\angle ADB = \angle x$, $\angle AEB = \angle y$ 라 하면

②180°

 $\triangle ABE$ 에서 $2 \circ + \times + \angle x = 180 \circ \cdots$ ①

 $\triangle ABD$ 에서 $\circ + 2 \times + \angle y = 180 \circ \cdots ②$

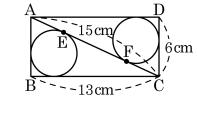
①+②를 하면 $3(\circ + \times) + (\angle x + \angle y) = 360^{\circ}$

① 200°

해설

 $\therefore 3 \times 60^{\circ} + (\angle x + \angle y) = 360^{\circ}$ $\therefore \ \angle x + \angle y = 180^{\circ}$

16. 다음 그림과 같은 직사각형 ABCD 에서 두 원은 각각 \triangle ABC, \triangle ACD 의 내접원이다. 두 접점 E, F 사이의 거리는 ?



①7cm \bigcirc 8cm ③ 9cm ④ 10cm ⑤ 11cm

 $\overline{\mathrm{AE}}$ 를 x 라 하면

해설

(15-x) + (6-x) = 13 : x = 4(cm) $\overline{AE} = \overline{CF} = 4(cm)$ 이므로

 $\therefore \overline{EF} = 15 - (4 + 4) = 7(cm)$

17. 다음 그림과 같은 $\triangle ADE$ 에서 $\angle ADE = 80^\circ$ 이고 점 B, C 는 각 각 \overline{AD} , \overline{AE} 위에 있다. $\overline{AB} = \overline{BC} = \overline{CD} = \overline{DE}$ 일 때, $\angle A$ 의 크기를 구하여라.

A C I

 $\angle x, \angle \text{CBD} = \angle \text{CDB}$

 ▶ 답:

 ▷ 정답:
 25°

 $\angle A$ 의 크기를 $\angle x$ 라고 하면

해설

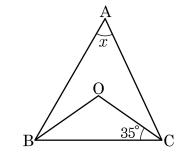
22x, 2DCE = 2DEC = 3 \triangle ADE 에서

 $\angle DAE + \angle DEA + 80^{\circ} = 180^{\circ}$

 $\angle x + 3\angle x = 100^{\circ}$ $\angle x = 25^{\circ}$

2x = 25

18. 다음 그림에서 점 O 는 \triangle ABC 의 외심이다. \angle OCB = 35° 일 때, $\angle x$ 의 크기는?



① 35° ② 40° ③ 45°

 $4 \ 50^{\circ}$

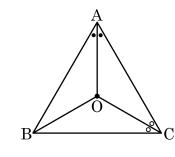
 $\angle OBC = \angle OCB = 35^{\circ}$

 $\angle BAC + \angle ABO + \angle ACO = 2x$

 $180^\circ = 35^\circ \times 2 + 2x$

 $110^{\circ} = 2x$ $\therefore x = 55^{\circ}$

19. 다음 그림에서 삼각형 ABC의 외심이 점 O라고 할 때, \angle AOC의 크 (단, $\angle OAC = \angle OAB = \bullet$, $\angle OCB = \angle OCA = \circ$)



4 120°

⑤ 130°

해설 ΔOAB 와 ΔOBC 는 이등변삼각형이므로

 $\angle OAB = \angle OBA, \ \angle OCB = \angle OBC$ 따라서 $\angle ABC = \bullet + \circ$ 이코 $\angle AOC = 2 \times \angle ABC$ 이므로

① 100° ② 105° ③ 110°

 $\angle AOC = 2 \times \bullet + 2 \times \circ$ 이다. 삼각형의 내각의 합은 180°이므로 △AOC에서

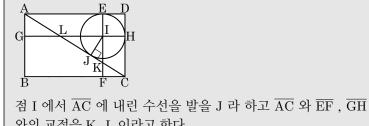
 $(2\times \bullet + 2\times \circ) + \bullet + \circ = 180\,^\circ,\, 3\times (\circ + \bullet) = 180\,^\circ,\, \bullet + \circ = 60\,^\circ$ $\therefore \angle AOC = 2(\bullet + \circ) = 2 \times 60^{\circ} = 120^{\circ}$

20. 다음 그림의 직사각형 ABCD 에서 $\overline{AB}=5,\ \overline{BC}=8$ 이다. $\triangle ACD$ 의 내심 I 를 지나고 변 AB, BC 에 평행한 직선을 그어 \square ABCD 의 네 변과 만나는 점을 각각 E,F,G,H 라 할 때, □GBFI 의 넓이를 구 하여라.

Η

▷ 정답: 20

▶ 답:



와의 교점을 K, L 이라고 한다. Δ CFK 와 Δ IJK 에서 $\angle \mathrm{CFK} = \angle \mathrm{IJK} = 90\,^{\circ}$

 $\angle CKF = \angle IKJ$ (맞꼭지각) $\overline{\mathrm{CF}} = \overline{\mathrm{HI}} = \overline{\mathrm{IJ}}$

 $\triangle \mathrm{CFK} \equiv \triangle \mathrm{IJK} \; (\mathrm{ASA} \; \text{합동})$ 같은 방법으로 $\triangle AGL \equiv \triangle IJL$

 $\therefore \ \Box \text{GBFI} = \triangle \text{ABC} = \frac{1}{2} \Box \text{ABCD} = \frac{1}{2} \times 5 \times 8 = 20$