1. 연립부등식 $\begin{cases} 4x - 2 < 10 \\ 2x - 5 > 1 \end{cases}$ 을 만족하는 정수 x 의 개수를 구하여라.

 ▶ 답:
 개

 ▷ 정답:
 0개

V 88: 0<u>/11</u>

4x - 2 < 10

4x < 12x < 3

2x - 5 > 1

2x > 6

x > 3 따라서 도시

따라서 동시에 만족하는 정수 x는 없다.

2. 모든 실수 x 에 대하여 $x^2 + 2(a-5)x + 2(3a-19)$ 가 양이 되기 위한 a 값의 범위는?

② a > 9 ③ $6 < a \le 9$

① a < 7

 $x^2 + 2(a-5)x + 2(3a-19) > 0$ 이므로 이 부등식의 D < 0 이다.

 $D = (a-5)^2 - 2(3a-19) = a^2 - 16a + 63 < 0$ $\therefore 7 < a < 9$

해설

- **3.** 연립부등식 $3(2x-1) \le 2(x+6)$, $2(x+6) \le 5(x+1)$ 에 대하여 해를
 - ① $\frac{7}{3} < x < \frac{15}{4}$ ② $\frac{7}{3} \le x < \frac{15}{4}$ ③ $2 \le x < 5$ ④ $\frac{7}{3} \le x \le \frac{15}{4}$

$$\Rightarrow 4x \le 15 \Rightarrow x \le \frac{15}{4}$$

$$2(x+6) \le 5(x+1)$$

$$3(2x-1) \le 2(x+6) \Rightarrow 6x-3 \le 2x+12$$

$$\Rightarrow 4x \le 15 \Rightarrow x \le \frac{15}{4}$$

$$2(x+6) \le 5(x+1) \Rightarrow 2x+12 \le 5x+5$$

$$\Rightarrow x \ge \frac{7}{3}$$

$$\therefore \frac{7}{3} \le x \le \frac{15}{4}$$

$$\therefore \frac{7}{3} \le x$$

4. $1 \le x \le 2$ 인 모든 실수 x에 대하여 부등식 $ax < 4 + x - x^2$ 이 항상 성립할 때, 실수 a의 값의 범위를 구하면?

① a < 1 ② a < 2 ③ a < 3 ④ a < 4 ⑤ a < 5

부등식 $ax < 4 + x - x^2$ 에서 $x^2 + (a-1)x - 4 < 0$ 1 < x < 2 에서

1 ≤ *x* ≤ 2 에서 이 부등식이 항상 성립해야 하므로

방정식 $x^2+(a-1)x-4=0$ 의 한 근이1 보다 작고, 다른 한 근은 2 보다 커야 한다. $f(x)=x^2+(a-1)x-4$ 로 놓으면

 $f(1) = 1 + (a-1) - 4 < 0 \text{ on } a < 4 \cdots \text{ on } a > 4$

 $f(2) = 4 + 2(a - 1) - 4 < 0 \text{ of } a < 1 \cdots \bigcirc$ $f(2) = 4 + 2(a - 1) - 4 < 0 \text{ of } a < 1 \cdots \bigcirc$

①, ⓒ에서 a < 1

5. 연립부등식 $\begin{cases} x^2 - x - 6 \le 0 \\ x^2 - 5x + 4 > 0 \end{cases}$ 을 민족하는 정수해는 몇 개인가?

① 7개 ② 6개 ③ 5개 ④ 4개 **⑤**)3개

 $x^2 - x - 6 \le 0$

 $\Rightarrow (x-3)(x+2) \le 0$ $\Rightarrow -2 < x < 3 \cdots$

 $\Rightarrow -2 \le x \le 3 \quad \cdots \quad \textcircled{1}$ $x^2 - 5x + 4 > 0$

 $\Rightarrow (x-1)(x-4) > 0$

 $\Rightarrow x < 1 \stackrel{\square}{\to} x > 4 \quad \cdots \quad 2$

①, ②의 공통범위는: -2 ≤ x < 1 ∴ 정수의 해: -2, -1, 0

6. 연립부등식 $\begin{cases} \frac{x}{2} - \frac{a}{4} \ge \frac{x}{4} - \frac{1}{8} \\ 3x - 1 \ge 5x - 7 \end{cases}$ 을 만족하는 정수 x가 3개일 때, 상수 a의 값의 범위는?

① $-\frac{1}{2} < a \le \frac{1}{2}$ ② $-\frac{1}{2} \le a < \frac{1}{2}$ ③ $0 \le a < 1$ ② $\frac{1}{2} < a \le \frac{3}{2}$ ⑤ $\frac{1}{2} \le a < \frac{3}{2}$

 $\frac{x}{2} - \frac{a}{4} \ge \frac{x}{4} - \frac{1}{8} \text{ 에서 } x \ge a - \frac{1}{2}$ $3x - 1 \ge 5x - 7 \text{ 에서 } x \le 3$ $\therefore a - \frac{1}{2} \le x \le 3$ 연립부등식을 만족하는 정수 x가 3개이려면

 $0 < a - \frac{1}{2} \le 1$ $\therefore \frac{1}{2} < a \le \frac{3}{2}$

7. 연립부등식 $\begin{cases} 5x - a < 11 \\ x - b < 3(x - 3) \end{cases}$ 의 해가 1 < x < 3이다. $-ax + b \ge 0$ 을 만족하는 정수 중 최댓값을 구하여라.

▶ 답:

▷ 정답: 1

해설 $5x < a + 11, x < \frac{a + 11}{5}$ $x - b < 3x - 9, 9 - b < 2x, \frac{9 - b}{2} < x$ $\frac{a + 11}{5} = 3 \qquad \therefore a = 4$ $\frac{9 - b}{2} = 1 \qquad \therefore b = 7$ $a = 4, b = 7 \Rightarrow -ax + b \ge 0 \text{에 대입하여 정리하면}$ $-4x + 7 \ge 0$ $x \le \frac{7}{4} \text{이므로 만족하는 정수 중 최댓값은 1이다.}$

- 8. x보다 크지 않은 최대의 정수와 x보다 작지 않은 최소의 정수의 합이 5일 때, *x*는?
- ① $\left\{\frac{5}{2}\right\}$ ② $\{x|2 \le x \le 3\}$ ③ $\{x|2 \le x < 3\}$

해설 [x]를 x보다 크지 않는 최대의 정수,

< x > = x보다 작지 않은 최대의 정수라 하자.

[x] = n, < x >= n이므로 $n + n = 5, n = \frac{5}{2}$

:. 적당하지 않다. n < x < n + 1 (n 은 정수)일 때,

[x] = n, $\langle x \rangle = n + 1$ 이 므로 n + n + 1 = 5

 $\therefore n = 2$

 $\therefore 2 < x < 3$

9. 6 개의 구슬 A, B, C, D, E, F 중 5 개의 무게는 같고, 나머지 1개의 무게는 다르다. A, B 의 무게의 합은 C, D 의 무게의 합보다 작고, B, C 의 무게의 합은 E, F 의 무게의 합보다 작을 때, 무게가 다른 구슬을 찾아라.

답:

▷ 정답: B

해설 6 개의 구슬 A, B, C, D, E, F 의 무게를 각각 a, b, c, d, e, f

라 하면 $a+b < c+d \cdots$ ①

b + *c* < *e* + *f* ··· □ ⑤ 에서 A, B, C, D 구슬 중 무게가 다른 것이 있으므로 E, F 의

구슬의 무게는 같다. 마찬가지 방법으로 \bigcirc 에서 A, D 구슬의 무게는 같다. 따라서 \bigcirc 에서 b < c 이므로 \bigcirc 에서 b + c < e + f 인 것은 구슬

B의 무게 때문이다. 즈 B 그슨이 무게가 다른 그슨들과 다르다

즉, B 구슬의 무게가 다른 구슬들과 다르다.

10. x, y가 실수이고 $x^2 - 2xy + y^2 - 2x - 2y + 4 = 0$ 을 만족할 때, $\frac{y}{x}$ 의 최대값 M, 최소값 m의 합 M + m의 값은?

① $\frac{5}{2}$ ② $\frac{7}{2}$ ③ $\frac{9}{2}$ ④ $\frac{8}{3}$ ⑤ $\frac{10}{3}$

 $\frac{y}{x} = k$ 라 하자. y = kx이므로 $x^2 - 2xy + y^2 - 2x - 2y + 4 = 0$ 에서 $(k - 2k + 1)x^2 - (2 + 2k)x + 4 = 0$ x, y는 실수이므로, 판별식은 0보다 크거나 같다.

 $D' = (k+1)^2 - 4(k^2 - 2k + 1) \ge 0$ $3k^2 + 10k - 3 \ge 0$

 $3k^2 - 10k + 3 \le 0$ $(k-3)(3k-1) \le 0$

 $\frac{1}{3} \le k \le 3$

 $\therefore \ m + M = \frac{1}{3} + 3 = \frac{10}{3}$