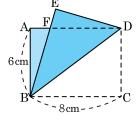
- 1. 세 변의 길이가 각각 다음과 같을 때, 둔각삼각형인 것은?
 - ① 3cm, 3cm, 4cm
- ② 3cm, 4cm, 5cm
- ⑤ 6cm, 8cm, 9cm
- ③ 4cm, 4cm, 7cm ④ 5cm, 12cm, 13cm

세 변의 길이가 a , b , c (a < b < c) 일 때, $a^2 + b^2 < c^2$ 일 때

둔각삼각형이므로 $37^2 > 4^2 + 4^2$ 이다.

2. 다음 그림과 같이 직사각형 ABCD 에서 $\overline{\mathrm{BD}}$ 를 접는 선으로 하여 접었다. $\overline{\mathrm{AF}}$ 의 길이를 x 로 놓을 때, $\overline{\mathrm{BF}}$ 의 길이를 x 에 관한 식으로 나타내면?

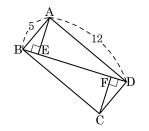


38-x 4 6-x 5 x^2 ① x + 4 ② 2x

 $\triangle ABF \equiv \triangle EDF$ 이므로 $\overline{AF} = x$ 라 하면

 $\overline{\mathrm{BF}}=8-x$ 이다.

3. 다음 그림과 같은 직사각형 ABCD 에서 점 A 와 점 C 가 대각선 BD에 이르는 거리의 합을 구하면?



- ① $\frac{118}{13}$ ② $\frac{119}{13}$

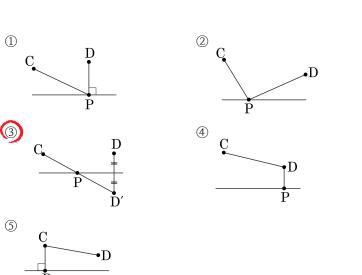
해설 $\triangle ABD$ 에서 $\overline{BD}=13$

 $5 \times 12 = 13 \times \overline{AE}, \ \overline{AE} = \frac{60}{13}$

따라서 $\overline{AE} = \overline{CF}$ 이므로 $\overline{AE} + \overline{CF} = \frac{60}{13} + \frac{60}{13} = \frac{120}{13}$ 이다.

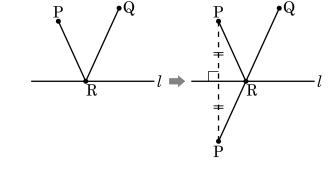
4. 다음 그림에서 CA⊥AB , C DB⊥AB 이고, 점 P 는 AB 위 를 움직일 때 CP + PD 의 최단 거리를 구하는 방법으로 옳은 것 은?

 $_{\triangleleft}\mathrm{D}$



AB 에 대한 점 D의 대칭점 D'을 잡고 선분 CD'가 AB와 만나는 점을 P로 잡는다.

- 다음 그림과 같이 점 P, Q 가 있을 때, $\overline{\mathrm{PR}}+\overline{\mathrm{RQ}}$ 의 값이 최소가 **5**. 되도록 직선 l위에 점 R를 잡는 과정이다. 빈칸에 알맞은 것은?
 - 직선 \square 에 대한 점 P의 대칭점 P' 을 잡고 선분 \square 가 직선 l과 만나는 점을 🔃로 잡는다.

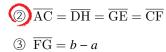


- $\textcircled{4} \ \ Q, \ PQ, \ Q \\ \textcircled{5} \ \ Q, \ P'Q, \ R$
- ① l, PQ, Q ② l, PQ, R
- (3) *l*, P'Q, R

l에 대한 점 P의 대칭점 P'을 잡고 선분 P'Q가 직선 l과 만나는

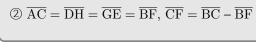
점을 R로 잡는다.

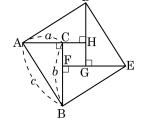
- 6. 다음 그림은 직각삼각형 ABC와 합동인 삼 각형을 붙여 정사각형 ABED를 만든 것이 다. 다음 중 옳지 <u>않은</u> 것은?
 - $\bigcirc \triangle ABC \equiv \triangle EDG$



해설

- △ABC + △EFB + △GDE ⑤ □CFGH는 정사각형





- - ① m + n④ 2(m + n)
- 2m+n
- $\mathfrak{G} m+2n$
- **-**(... 1
- © 2mn

나머지 한 변의 길이를 *X* 라 하면

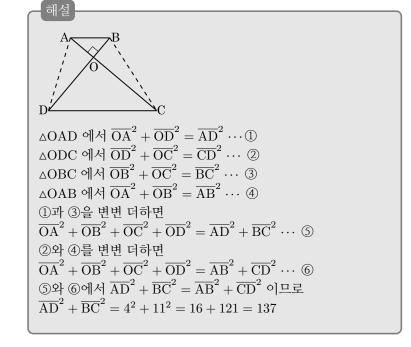
 $(m^2 + n^2)^2 = (m^2 - n^2)^2 + X^2$ $m^4 + 2m^2n^2 + n^4 = m^4 - 2m^2n^2 + n^4 + X^2$ $X^2 = 4m^2n^2 = (2mn)^2$ X > 0, m > 0, n > 0 이므로 X = 2mn 이다.

8. 다음 그림과 같이 $\overline{AC}\bot\overline{BD}$ 이고 \overline{AB} = 4, $\overline{\mathrm{CD}}=11$ 일 때, $\overline{\mathrm{AD}}^2+\overline{\mathrm{BC}}^2$ 의 값을 구하여라.

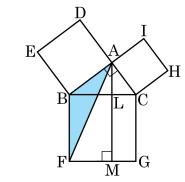
① 127

4 140

3137 ② 130 ⑤ 157



9. 다음 그림은 $\angle A = 90\,^{\circ}$ 인 직각삼각형 ABC에서 세변을 각각 한 변으로 하는 정사각형을 그린 것이다. $\triangle ABF$ 와 넓이가 같지 <u>않은</u> 삼각형은?



- ② △BLF
- ③ △AFM
- Ü
- ⑤ △FMB

① △EBC, SAS 합동

해설

- ② ABLF, 밑변과 높이가 같은 삼각형
- ④ △EAB, △BLF와 넓이가 같다.
- ⑤ ΔFMB, 밑변과 높이가 같은 삼각형

- 10. 다음 그림과 같이 $\angle B = 90$ ° 인 직각삼각형 ABC 의 점 B 에서 \overline{AC} 에 내린 수선의 발을 H 라 하 고, a+b+c=10 , $\overline{\mathrm{BH}}=5\,\mathrm{cm}$ 일 때, 삼각형 ABC 의 넓이를 구하면?

- ① $25 \,\mathrm{cm}^2$ ② $\frac{25}{2} \,\mathrm{cm}^2$ ③ $\frac{25}{3} \,\mathrm{cm}^2$ ④ $5 \,\mathrm{cm}^2$

(a+c)=10-b 이므로 양변 제곱을 하면 $(a+c)^2=(10-b)^2$ $a^2+2ac+c^2=b^2-20b+100$ 피타고라스 정리에 의해서 $b^2 = a^2 + c^2$ 을 이용하면

 $b^2 + 2ac = b^2 - 20b + 100$ 이므로

 $2ac + 20b = 100 \cdots (1)$

또한 $\overline{AB} \times \overline{BC} = \overline{AC} \times \overline{BH}$ 에서

 $5b = ac \cdots (2)$ (1)에 (2)를 대입하면

30b=100에서 $b = \frac{100}{30}$

따라서 △ABC 의 넓이는 $\frac{1}{2} \times 5b = \frac{50}{6} = \frac{25}{3} (\text{cm}^2)$