1. 2|x-1|+x-4=0의 해를 구하여라.

 □
 □

 □
 □

▷ 정답: 2

▷ 정답: -2

i) x < 1 일 때,

해설

-2(x-1) + (x-4) = 0 $\therefore x = -2$

ii) x ≥ 1일 때, 2(x-1) + x-4=0

 $\therefore x = 2$

파라서 구하는 해는 x = -2 또는 x = 2 이다.

- x에 대한 이차방정식 $x^2 2(m+a-1)x + m^2 + a^2 2b = 0$ 이 m의 2. 값에 관계없이 중근을 갖는다. a+b의 값은?
 - ① $\frac{1}{2}$ ② 1 ③ $\frac{3}{2}$ ④ 2 ⑤ $\frac{5}{3}$

중근을 가지므로, $\frac{D'}{4} = 0$ 을 만족한다.

$$\frac{D'}{4} = (m+a-1)^2 - (m^2 + a^2 - 2b) = 0$$

$$m(2a-2) + (1-2a+2b) = 0$$

$$m에 대한 항등식이므로$$

$$2a-2=0, 1-2a+2b=0$$

$$2a-2=0, 1-2a+2b=0$$

$$\therefore a=1, b=\frac{1}{2}$$

$$\therefore a+b=\frac{3}{2}$$

- **3.** 이차방정식 $x^2 + 2x + k 3 = 0$ 이 <u>서로 다른</u> 두 실근을 가질 때, 정수 k의 최대값은?
- ① -1 ② 0 ③ 1 ④ 2
- **(5)**3

해설

서로 다른 두 실근을 갖으려면 판별식이 0보다 커야 한다. $D' = 1^2 - (k - 3) > 0$

 $\therefore k < 4$

:.최댓값은 3 (:: *k*는 정수)

4. 이차식 $x^2 - 2(k-1)x + 2k^2 - 6k + 4$ 가 x에 대하여 완전제곱식이 될 때, 상수 k의 값의 합을 구하여라.

▶ 답: ▷ 정답: 4

이차식이 완전제곱식이 되면

이차방정식 $x^2 - 2(k-1)x + 2k^2 - 6k + 4 = 0$ 이 중근을 갖는다.

따라서, $\frac{D}{4} = (k-1)^2 - (2k^2 - 6k + 4) = 0$ 위의 식을 정리하면

 $-k^2 + 4k - 3 = 0$

 $k^2 - 4k + 3 = 0$ (k-1)(k-3) = 0에서

k=1 또는 k=3

- 5. 이차방정식 $x^2 + (a+1)x + a 5 = 0$ 의 두 실근을 β , β^2 이라 할 때, $a+\beta+\beta^2$ 의 값은?
 - ① -3 ② -1 ③ 0 ④ 1 ⑤ 3

해설

두 근의 합은 $\beta+\beta^2=-a-1$ 이므로 $a+\beta+\beta^2=a-a-1=-1$

- **6.** 이차함수 $y = x^2 2ax 2b^2 4a + 4b 6$ 의 그래프가 x축에 접할 때, $a^2 + b^2$ 의 값은? (단, a, b는 실수)
 - ① 2

②5 ③ 8 ④ 10 ⑤ 13

 $x^2 - 2ax - 2b^2 - 4a + 4b - 6 = 0$ 에서 $\frac{D}{4} = a^2 - (-2b^2 - 4a + 4b - 6) = 0$

 $(a+2)^2 + 2(b-1)^2 = 0$ 이 때, a,b가 실수이므로 a+2=0,b-1=0

따라서 a=-2,b=1이므로

 $a^2 + b^2 = 5$

- 7. 이차함수 $y = ax^2 + bx 3$ 은 x = 2일 때 최댓값 5를 가진다. 이때, a+b의 값은? (단, a,b 는 상수)
 - **3**6 **4**8 **5**10 ② 4 ① 2

 $y = ax^2 + bx - 3 = a(x - 2)^2 + 5$ $= ax^2 - 4ax + 4a + 5$ 이므로

b = -4a, -3 = 4a + 5

두 식을 연립하여 풀면 a=-2, b=8

 $\therefore a+b=6$

해설

- 8. x의 범위가 $0 \le x \le 3$ 일 때, 이차함수 $y = -x^2 + 2x + 1$ 의 최댓값을 M, 최솟값을 m 이라 한다. 이 때, M+m 의 값을 구하여라.

▶ 답:

▷ 정답: 0

 $y = -x^2 + 2x + 1 = -(x - 1)^2 + 2$ 이므로 오른쪽 그림에서 주어진 이차함수 는 x = 1 일 때, 최댓값 2, x = 3 일 때, 최솟값 -2를 가짐을 알 수 있다. $\therefore M + m = 2 + (-2) = 0$

- 9. 방정식 $(a^2-3)x-1 = a(2x+1)$ 의 해가 존재하지 않기 위한 a의 값을 구하여라.

▷ 정답: 3

해설

▶ 답:

 $(a^2 - 2a - 3)x = a + 1$ (a-3)(a+1)x = a+1

 $\therefore a = 3$ 이면 해가 없다.

10. 이차방정식 $x^2 + 2x - a = 0$ 의 해가 3 또는 b라 할 때, 상수 a, b의 합 a + b의 값은?

① 8 ② 10 ③ 12 ④ 14 ⑤ 16

x = 3이 $x^2 + 2x + a = 0$ 의 근이므로 $3^2 + 2 \cdot 3 - A = 0$ $\therefore a = 15$ $\therefore a = 15$ 를 주어진 방정식에 대입하면 $x^2 + 2x - 15 = 0$, (x + 5)(x - 3) = 0

따라서 x = -5 또는 x = 3이므로 b = -5 $\therefore a + b = 15 + (-5) = 10$

해설

11. 방정식 $x^2 + 2(k+a)x + k^2 + k + b = 0$ 이 k의 값에 관계없이 중근을 갖도록 실수 a,b의 값을 정할 때, a+2b의 값을 구하면?

① -2 ② -1 ③ 0 ④ 1

⑤ 2

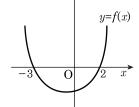
준식에서
$$\frac{D}{4} = (k+a)^2 - (k^2+k+b)$$

= $(2a-1)k + a^2 - b = 0$
이것이 k 에 대한 항등식이 되어야 하므로
 $2a-1=0, \quad a^2-b=0$

$$\therefore a = \frac{1}{2}, \quad b = \frac{1}{4}$$
$$\therefore a + 2b = 1$$

- 12. 이차함수 y = f(x) 의 그래프가 다음 그림과 같을 때, 방정식 $f(x^2 - 1) = 0$ 의 서로 다른 실근의 개수는? ③ 3개
 - ②2개 ① 1개 ⑤ 5개
 - ④ 4개

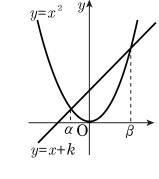
해설



주어진 그래프에서 $f(-3)=0,\; f(2)=0$ 이므로 방정식 $f(x^2-1)=0$ 의 근은 (i) $x^2 - 1 = -3$ 일 때, $x^2 = -2$ ∴ $x = \pm \sqrt{2}i$

- (ii) $x^2 1 = 2$ 일 때, $x^2 = 3$: $x = \pm \sqrt{3}$ (i), (ii)에서 주어진 방정식의 서로 다른 실근의 개수는 2개
- 이다.

13. 이차함수 $y = x^2$ 과 일차함수 y = x + k의 그래프가 다음 그림과 같이 서로 다른 두 점에서 만날 때, 다음 보기에서 옳은 것을 모두 고른 것은?



 $\bigcirc \alpha + \beta = 1$ \bigcirc k > 0

③つ, ©

 \bigcirc $\alpha\beta = -k$

- \bigcirc (4) (L), (E)
- $\textcircled{5} \ \textcircled{7}, \textcircled{6}, \textcircled{6}$

② ①, ①

 α , β 이므로 이차방정식 $x^2=x+k$, 즉 $x^2-x-k=0$ 은 서로 다른 두 실근 α , β 를 갖는다.

두 함수 $y = x^2$ 과 y = x + k의 그래프가 만나는 두 점의 x좌표가

- ⊙ 이차방정식의 근과 계수의 관계에 의하여
- $\alpha+\beta=1\cdots \ (침)$ ① 이차방정식 $x^2-x-k=0$ 의 판별식을 D라 하면 D = 1+4k > 0
- 에서 $k > -\frac{1}{4} \cdots$ (거짓) ⓒ 이차방정식의 근과 계수의 관계에 의하여
- $\alpha\beta = -k \cdots$ (참) 따라서, 옳은 것은 ①, ⓒ이다.

- **14.** 이차함수 $y = ax^2 + bx + c$ 의 그래프가 x = 1 에서 최솟값 -1 을 갖고 한 점 (3, 7) 을 지날 때, a + b + c 의 값은?
 - ②-1 ③ 0 ④ 1 ⑤ 2 ① -2

꼭짓점이 (1, -1) 이므로 $y = a(x-1)^2 - 1 = ax^2 - 2ax + a - 1$

(3, 7) 을 대입하면

7 = 9a - 6a + a - 1a = 2 , b = -4, c = 1

해설

 $\therefore a+b+c=2+(-4)+1=-1$

- 15. 이차함수 $y = -x^2 2ax + 6a$ 의 최댓값을 M 이라고 할 때, M 의 최솟값을 구하여라.

▶ 답:

▷ 정답: -9

 $y = -x^2 - 2ax + 6a = -(x+a)^2 + a^2 + 6a$ $\therefore M = a^2 + 6a = (a+3)^2 - 9$

따라서 *M* 의 최솟값은 -9 이다.

16. $f(x) = x^2 - x + 1$ 일 때, $0 \le x \le 1$ 에서 f(4 - f(x))의 최솟값은?

① 4 ② 5 ③ 6 ④ 7 ⑤

$$f(4-f(x)) 에서 4-f(x) = t 라 두면,$$

$$t = -x^2 + x + 3$$

$$= -\left(x - \frac{1}{2}\right)^2 + \frac{13}{4} (0 \le x \le 1) 에서$$

$$3 \le t \le \frac{13}{4}$$
따라서
$$f(4-f(x)) = f(t) = t^2 - t + 1$$

$$= \left(t - \frac{1}{2}\right)^2 + \frac{3}{4}\left(3 \le t \le \frac{13}{4}\right)$$

$$t = 3 일 때, 최솟값 7을 갖는다.$$

지면으로부터 초속 40m 로 똑바로 위로 쏘아 올린 물체의 x 초 후의 높이를 ym 라고 하면 y = -5x² + 40x 의 관계가 성립한다. 이 물체가 최고 높이에 도달할 때까지 걸린 시간과 그 때의 높이를 구하여라.
 답: 초

 $\underline{\mathbf{m}}$

▶ 답:

 ▷ 정답: 4초

 ▷ 정답: 80m

-해설

따라서 x = 4 일 때, y 는 최댓값 80 을 갖는다.

 $y = -5x^2 + 40x$ 에서 $y = -5(x-4)^2 + 80$ 이다.

- 18. 이차함수 $y = x^2 1$ 의 그래프와 직선 y = ax + b가 다음 그림과 같이 두 점 P, Q에서 만난다. 점 P의 x의 좌표가 $1 + \sqrt{2}$ 일 때, 2a + b의 값을 구하여라. (단, a, b는 유리수이다.)
- $\begin{array}{c|c}
 y=x^2-1 \\
 \hline
 Q & O \\
 y=ax+b & -1
 \end{array}$

답:

정답: 4

이차함수 $y = x^2 - 1$ 의 그래프와 직선 y = ax + b 의 한 교점 P 의

- x 좌표가 $1+\sqrt{2}$ 이므로 $1+\sqrt{2}$ 는 이차방정식 $x^2-1=ax+b$ 의 근이다. $\left(1+\sqrt{2}\right)^2-1=a\left(1+\sqrt{2}\right)+b$
- $2 + 2\sqrt{2} = a + b + a\sqrt{2}$
- a, b 가 유리수이므로 무리수가 서로 같을 조건에 의하여 2 = a + b, 2 = a
- 2 = a + b, 2 = a $\therefore a = 2, b = 0$
- a=2, b=0

- 19. 다음 그림과 같이 직선 l 위를 움직이는 점 P가 있다. x 축 위에 내린 수선의 발을 \mathbf{Q} 라고 할 때, ΔPOQ 의 넓이의 최댓값을 구하여라. (단, 점 P는 제 1 사분면 위에 있다.)

▶ 답:

ightharpoonup 정답: $rac{9}{4}$

직선 l은 두 점 (3, 0), (0, 6)을 지나므로 y = -2x + 6점 P 의 좌표를 (a, b) 로 놓으면 b = -2a + 6

$$\triangle POQ = \frac{1}{2}ab = \frac{1}{2}a(-2a+6)$$

= $-a^2 + 3a$
= $-\left(a - \frac{3}{2}\right)^2 + \frac{9}{4}$
한편, 점 P 는 제 1사분면 위의 점이도

한편, 점 P 는 제 1사분면 위의 점이므로 $a>0,\ b=-2a+6>0$ $\therefore \ 0< a<3$ 따라서 ΔPOQ 의 넓이는 $a=\frac{3}{2}$ 일 때, 최댓값 $\frac{9}{4}$ 를 갖는다.

20. $O(0, \ 0), \ A(7, \ 1), \ B(5, \ 5)$ 라 할 때, $\overline{OP}^2 + \overline{AP}^2 + \overline{BP}^2$ 을 최소로 하는 점 P 의 좌표를 $(\alpha, \ \beta)$, 그 때의 최솟값을 r 라 할 때, $\alpha + \beta + r$ 의 값을 구하여라.

▷ 정답: 46

▶ 답:

V 0H:

해설 $\overline{OP}^2 + \overline{AP}^2 + \overline{BP}^2$

= x² + y² + (x - 7)² + (y - 1)² + (x - 5)² + (y - 5)² = 3(x - 4)² + 3(y - 2)² + 40 (x - 4)² ≥ 0, (y - 2)² ≥ 0 이므로 x = 4, y = 2 에서 최솟값 r = 40 을 갖는다. ∴ α + β + r = 46