1. $\sqrt{12} \times \sqrt{18} \times \sqrt{75} = a\sqrt{2}$ 일 때, a 의 값은?

① 12 ② 15 ③ 30 ④ 90 ⑤ 120

 $\sqrt{12} \times \sqrt{18} \times \sqrt{75}$ $= \sqrt{2^2 \times 3} \times \sqrt{3^2 \times 2} \times \sqrt{5^2 \times 3}$

 $= \sqrt{2} \times 3 \times \sqrt{3} \times 2 \times \sqrt{3}^2 \times 3$ $= 2\sqrt{3} \times 3\sqrt{2} \times 5\sqrt{3}$

 $= 10 \times 3 \times 3\sqrt{2} = 90\sqrt{2}$

 $\therefore \ a = 90$

2. 다음 중 $\sqrt{\frac{2}{5}} \div \sqrt{2} \div \frac{1}{\sqrt{15}}$ 를 바르게 계산한 것을 고르면?

① $\sqrt{2}$ ② $\sqrt{3}$ ③ 2 ④ $\sqrt{5}$ ⑤ $\sqrt{6}$

해설 $(\frac{2}{15}) = \frac{\sqrt{2}}{\sqrt{5}} \times \frac{1}{\sqrt{2}} \times \sqrt{15}$ $= \frac{\sqrt{15}}{\sqrt{5}}$ $= \sqrt{3}$

- **3.** $2\sqrt{50} \sqrt{98} + \sqrt{18}$ 을 계산하면?
 - ① $-3\sqrt{2}$ $(4)6\sqrt{2}$ $(5) -7\sqrt{2}$

- ② $4\sqrt{2}$ ③ $5\sqrt{2}$

(준식) = $2\sqrt{5 \times 5 \times 2}$ - $\sqrt{7 \times 7 \times 2}$ + $\sqrt{3 \times 3 \times 2}$ $= 10\sqrt{2} - 7\sqrt{2} + 3\sqrt{2}$

 $=6\sqrt{2}$

- 다음 그림과 같이 넓이가 각각 **4.** 2 cm², 8 cm², 18 cm² 인 정사각형 모 양의 타일을 이어 붙였다. 이 때, 이 타일로 $8 \, \text{cm}^2$ 이루어진 도형의 둘레의 길이는? $2 \, \mathrm{cm}^2$
 - $18\,\mathrm{cm}^2$
 - ④ $17\sqrt{2}$ cm

① $12\sqrt{2}$ cm

- $2 13\sqrt{2} \,\mathrm{cm}$
- $315\sqrt{2}\,\mathrm{cm}$

해설

 \bigcirc 18 $\sqrt{2}$ cm

넓이가 각각 $2\,\mathrm{cm}^2$, $8\,\mathrm{cm}^2$, $18\,\mathrm{cm}^2$ 이므로 한 변의 길이는

 $\sqrt{2}\,\mathrm{cm},\ 2\,\sqrt{2}\,\mathrm{cm},\ 3\,\sqrt{2}\,\mathrm{cm}$ 이므로 이 타일로 이루어진 도형의 둘 레의 길이는 $(\sqrt{2}+2\sqrt{2}+3\sqrt{2})\times 4-(\sqrt{2}+2\sqrt{2})\times 2=18\sqrt{2}$ (cm) 이다.

- 5. 다음 중 그 값이 나머지 넷과 <u>다른</u> 것은?
- ① $\sqrt{(-5)^2}$ ② $(-\sqrt{5})^2$ ③ $-\sqrt{(-5)^2}$
- $4 \sqrt{5^2}$ $(\sqrt{5})^2$

①, ②, ④, ⑤
$$\sqrt{5^2} = \sqrt{(-5)^2} = (-\sqrt{5})^2 = (\sqrt{5})^2 = 5$$

③ $-\sqrt{(-5)^2} = -\sqrt{5^2} = -5$

6. a > 0 일 때, $\sqrt{(-2a)^2} - \sqrt{9a^2}$ 을 간단히 하면?

① -11a ② -7a ③ -5a ④ -a ⑤ a

해설 $\sqrt{4a^2} - \sqrt{9a^2} = 2a - 3a = -a$

7. a 가 자연수이고 $\sqrt{\frac{18a}{5}}$ 가 정수일 때, a 의 값 중 가장 작은 값은?

① 2 ② 3 ③ 5 ④ 10 ⑤ 30

াপ্র $\sqrt{\frac{18a}{5}} = \sqrt{\frac{2 \times 3^2 \times a}{5}}$ $\therefore a = 2 \times 5 = 10$

8.
$$\sqrt{(2-\sqrt{2})^2} - \sqrt{(1-\sqrt{2})^2}$$
 을 간단히 하면?

① 1 ② -1 ③ $3 - 2\sqrt{2}$ ④ $-3 + 2\sqrt{2}$ ⑤ $1 - 2\sqrt{3}$

 $1 < \sqrt{2} < 2$ 이旦로 $2 - \sqrt{2} > 0$, $1 - \sqrt{2} < 0$ $\left| 2 - \sqrt{2} \right| - \left| 1 - \sqrt{2} \right| = 2 - \sqrt{2} + 1 - \sqrt{2}$ $= 3 - 2\sqrt{2}$

- 9. 다음 중 수직선 위에서 $-\sqrt{10}$ 과 3 사이에 있는 수에 대한 설명으로 옳지 <u>않은</u> 것을 모두 고르면?
 - ① 무리수는 무수히 많다.
 - ② 범위 안의 모든 수를 $\frac{n}{m}$ 으로 나타낼 수 있다. ③ 정수는 6 개가 있다.

 - ④ 자연수는 3 개가 있다. ⑤ 실수는 무수히 많다.

 $3 < \sqrt{10} < 4$ 에서 $-4 < -\sqrt{10} < -3$ 이므로 범위는 $-3. \times \times \times \sim 3$ ② 범위 안의 모든 수를 $\frac{n}{m}$ 으로 나타낼 수 있다. \rightarrow 실수 중

- 유리수만이 $\frac{n}{m}$ 으로 나타낼 수 있다. ④ 자연수는 3 개가 있다. \rightarrow 1, 2 . 두 개 있다.

10.
$$\sqrt{8} - \frac{1}{\sqrt{18}} + \frac{1}{\sqrt{32}} = k\sqrt{2}$$
 일 때, k 의 값은?

① 2 ② $\frac{23}{12}$ ③ $\frac{47}{24}$ ④ 3 ⑤ $\frac{57}{24}$

$$2\sqrt{2} - \frac{1}{3\sqrt{2}} + \frac{1}{4\sqrt{2}} = 2\sqrt{2} - \frac{\sqrt{2}}{6} + \frac{\sqrt{2}}{8}$$
$$= \frac{48\sqrt{2} - 4\sqrt{2} + 3\sqrt{2}}{24}$$
$$= \frac{47\sqrt{2}}{24}$$

11. 다음 표는 제곱근표의 일부분이다. 다음 중 주어진 표를 이용하여 그 값을 구할 수 있는 것은?

수	0	1	2	3
3.0	1.732	1.735	1.738	1.741
3.1	1.761	1.764	1.766	1.769
3.2	1.789	1.792	1.794	1.797
3.3	1.817	1.819	1.822	1.825
3.4	1.844	1.847	1.849	1.852

 $3\sqrt{3.14}$

① $\sqrt{3.60}$

 $2 \sqrt{3.45}$

 $\sqrt{3.14}$ $\sqrt{3.33} + \sqrt{3.15}$

 $\sqrt[4]{\sqrt{3.11}} - \sqrt{3.01}$

주어진 제곱근표로는 $\sqrt{3.60}$, $\sqrt{3.45}$, $\sqrt{3.14}$, $\sqrt{3.33}$ + $\sqrt{3.15}$ 의 값을 구할 수 없다.

12. a > 3 일 때, $\sqrt{(-3a)^2} - \sqrt{(a-3)^2}$ 을 간단히 하면?

② -4a + 3① -4a - 3

3 -2a + 3(5) 2a + 3

 $4 \ 2a - 3$

 $\sqrt{(-3a)^2} - \sqrt{(a-3)^2} = 3a - (a-3) = 2a + 3$

13. 다음 중 각 식을 만족하는 x 의 값이 무리수인 것을 $\underline{\mathsf{PF}}$ 고르면?

(a) $x^2 = \frac{8}{49}$ (b) $x^2 = 7$

(3) (2), (1) ① ①,② ②,⑤ ③ ⑤,② ④ ⑤,◎

- **14.** $a = 6 \sqrt{5}$, $b = 1 + 2\sqrt{5}$ 일 때, 다음 중 옳은 것은?
 - a+b < 0
- a b > 0
- b-4 < 0
- 2a + b > 15

- $a+b=6-\sqrt{5}+1+2\sqrt{5}=7+\sqrt{5}>0$ ② $a-b=6-\sqrt{5}-1-2\sqrt{5}=5-3\sqrt{5}<0$

- 15. 다음에 주어진 수를 크기가 큰 것부터 차례로 나열할 때, 두 번째에 해당하는 것은?
 - ① $\sqrt{3} + \sqrt{2}$ $4 \sqrt{5} + \sqrt{3}$
- ② $\sqrt{3} + 1$ ③ $\sqrt{2}$

 $\sqrt{5}$ $\sqrt{2} + \sqrt{5}$

i) $\sqrt{3} + \sqrt{2} - (\sqrt{3} + 1) = \sqrt{2} - 1 > 0$

- $\therefore \sqrt{3} + \sqrt{2} > \sqrt{3} + 1$
- ii) $\sqrt{3} + 1 \sqrt{2} > 0$ $\therefore \sqrt{3} + 1 > \sqrt{2}$
- iii) $\sqrt{3} + \sqrt{2} (\sqrt{5} + \sqrt{3}) = \sqrt{2} \sqrt{5} < 0$ $\therefore \sqrt{3} + \sqrt{2} < \sqrt{5} + \sqrt{3}$
- iv) $\sqrt{2} + \sqrt{5} (\sqrt{5} + \sqrt{3}) = \sqrt{2} \sqrt{3} < 0$
- $\therefore \quad \sqrt{2} + \sqrt{5} < \sqrt{5} + \sqrt{3}$
- 따라서 주어진 수의 순서는 $\sqrt{5} + \sqrt{3} > \sqrt{5} + \sqrt{2} > \sqrt{3} + \sqrt{2} > \sqrt{3} + 1 > \sqrt{2}$

- ① $3\sqrt{2}-1$ ② $\sqrt{3}+1$ ③ $2\sqrt{2}$

 $\sqrt{2}$ ≒ 1.414 이므로 $\sqrt{2} + 1$ ≒ 2.414

 $\sqrt{3}$ ≒ 1.732 이므로 $2\sqrt{3}$ ≒ 3.464

⑤ $\sqrt{3} + 2 = 3.732$

17. 반지름의 길이의 비가 1:3 인 두 원이 있다. 이 두 원의 넓이의 합이 $40\pi\mathrm{cm}^2$ 일 때, 작은 원의 반지름의 길이는 몇 cm 인가?

① 1cm ② 2cm ③ 3cm ④ 4cm ⑤ 5cm

작은 원의 반지름을 r라고 하면, 큰 원의 반지름은 3r이다.

(두 원의 넓이의 합)= $\pi r^2 + \pi (3r)^2 = 10\pi r^2 = 40\pi \text{ cm}^2$ $r^2 = 4$ ∴ r = 2 cm (∵ r > 0)

18. 다음 중 옳은 것은?

- (무리수) + (유리수) = (무리수) ② (무리수) x (무리수) = (무리수)
- ③ (유리수) \div (무리수) = (무리수)
- ④ (무리수) + (무리수) = (무리수)⑤ $(유리수) \times (무리수) = (무리수)$

② $\sqrt{3} \times \sqrt{3} = 3$: 유리수

- ③ $\frac{0}{\sqrt{3}} = 0$: 유리수
- ④ $\sqrt{3} + (-\sqrt{3}) = 0$: 유리수 ⑤ $0 \times \sqrt{3} = 0$: 유리수

- **19.** $\sqrt{(-6)^2} + (-2\sqrt{3})^2 \sqrt{3}\left(\sqrt{24} \frac{3}{\sqrt{3}}\right) = a + b\sqrt{2}$ 의 꼴로 나타낼 때, a + b 의 값은?(단, a, b 는 유리수)
 - ① -15 ② 15 ③ -9 ④ 9 ⑤ 0

 $6 + 12 - 6\sqrt{2} + 3 = 21 - 6\sqrt{2}$

∴ a = 21, b = -6∴ a + b = 21 - 6 = 15

- **20.** 한 변의 길이가 a 이고 높이가 $\frac{\sqrt{3}}{2}a$ 인 정삼각형과 그 둘레의 길이가 같은 정사각형이 있다면, 이 정사각형의 넓이는 정삼각형 넓이의 몇 배인가 ?
 - ① 1 배 ② 2 배 ④ $3\sqrt{3}$ 배 ③ $\frac{3\sqrt{3}}{4}$ 배

정삼각형의 넓이는 $\frac{1}{2} \times a \times \frac{\sqrt{3}}{2} a = \frac{\sqrt{3}}{4} a^2$, 정사각형의 한 변의 길이는 $\frac{3}{4} a$ 이므로 정사각형의 넓이는 $\frac{9}{16} a^2$ $\frac{\sqrt{3}}{4} a^2 \times \square = \frac{9}{16} a^2$ $\therefore \square = \frac{3\sqrt{3}}{4} \text{ (배)}$