- 1. x에 관한 이차방정식 $x^2+nx+p=0$ 의 두 근을 α,β 라 하고, x^2+ nx+q=0의 두 근을 γ,δ 라 할 때, $(\alpha-\gamma)(\alpha-\delta)(\beta-\gamma)(\beta-\delta)$ 를 p,q로 나타내면?
 - $(p-q)^2$ $(2p-3q)^2$
- ① $(p+q)^2$ ② $(2p+q)^2$ ③ $(p-2q)^2$

근과 계수와의 관계에서

 $\alpha + \beta = -n$, $\alpha\beta = p$, $\gamma + \delta = -n$, $\gamma\delta = q$ 이므로 주어진 $= \{(\alpha - \gamma)(\beta - \gamma)\}\{(\alpha - \delta)(\beta - \delta)\}$

 $= \left\{ \gamma^2 - (\alpha + \beta)\gamma + \alpha\beta \right\} \left\{ \delta^2 - (\alpha + \beta)\delta + \alpha\beta \right\}$

 $= (\gamma^2 + n\gamma + p)(\delta^2 + n\delta + p)$ 그런데, $\gamma^2 + n\gamma + q = 0$ 에서

 $\gamma^2 + n\gamma + p = p - q$ 또, $\delta^2 + n\delta + q = 0$ 에서

 $\delta^2 + n\delta + p = p - q$ 따라서, 주어진 식= $(p - q)^2$

2. 직선 y = x + a가 포물선 $y = ax^2 + (b+1)x - \frac{b}{2}$ 에 의해 잘려진 선분의 길이의 최솟값을 구하면?

① $\sqrt{5}$ ② $\sqrt{6}$ ③ $\sqrt{7}$ ④ $2\sqrt{2}$ ⑤ $5\sqrt{3}$

교점의 x좌표를 구하는 식은 $ax^2 + (b+1)x - \frac{b}{2} = x + a$ $ax^2 + bx - \frac{b}{2} - a = 0$ 의 두 근을 α , β 라 하면 $\alpha + \beta = -\frac{b}{a}, \alpha\beta = \frac{-\frac{b}{2} - a}{a}$ 교점은 $(\alpha, \alpha + a), (\beta, \beta + a)$ ∴ 교점을 이은 선분의 길이를 l이라 하면 $l^2 = 2(\beta - \alpha)^2 = 2(\beta + \alpha)^2 - 8\alpha\beta$ $= 2\left(-\frac{b}{a}\right)^2 - 8\left(-\frac{\frac{b}{2} - a}{a}\right)$ $= 2\left\{\left(\frac{b}{a}\right)^2 + 2\left(\frac{b}{a}\right) + 4\right\}$ $= 2\left\{\left(\frac{b}{a} + 1\right)^2 + 3\right\} \ge 6$ $\therefore l \ge \sqrt{6}$

3. 이차방정식 $x^2+3x+1=0$ 의 두 근을 α,β 라 할 때, $\sqrt{\alpha}+\sqrt{\beta}$ 의 값을 계산하면?

① $\sqrt{5}i$ ② $-\sqrt{5}i$ ③ $\sqrt{5}$ ④ $-\sqrt{5}$ ⑤ $\pm\sqrt{5}i$

 $\alpha+\beta=-3<0, \alpha\beta=1>0, D=9-4>0$ 이므로 두 근은 모두 음수이다. $(\sqrt{\alpha}+\sqrt{\beta})^2=(\sqrt{\alpha})^2+(\sqrt{\beta})^2+2\sqrt{\alpha}\cdot\sqrt{\beta}$ $=\alpha+\beta-2\sqrt{\alpha\beta}\,(\because\alpha<0,\beta<0$ 이므로)=-3-2=-5 $\therefore\sqrt{\alpha}+\sqrt{\beta}=\pm\sqrt{5}i$ 한편, $\sqrt{\alpha}+\sqrt{\beta}=\sqrt{(-\alpha)\cdot(-1)}+\sqrt{(-\beta)\cdot(-1)}$ $=\sqrt{-\alpha}\cdot i+\sqrt{-\beta}\cdot i$ $=(\sqrt{-\alpha}+\sqrt{-\beta})\cdot i$ $\therefore\sqrt{\alpha}+\sqrt{\beta}=(\mathring{\varsigma}^{+})\times i\stackrel{\Xi}{=}$ 이다. $\therefore\sqrt{\alpha}+\sqrt{\beta}=\sqrt{5}i$