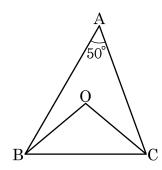
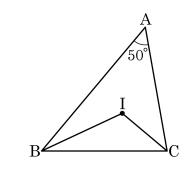
1. 다음 그림에서 점 O는 \triangle ABC의 외심이다. \angle A = 50°일 때, \angle BOC의 크기를 구하면?



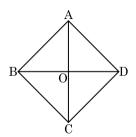
2. 다음 그림에서 $\triangle ABC$ 의 내심을 I라 할 때, $\angle A=50$ °이면 $\angle BIC$ 의 크기는?



점 I가
$$\triangle$$
ABC의 내심일 때, \angle BIC = $90^{\circ} + \frac{1}{2} \angle$ A이다.

$$\therefore \angle$$
BIC = $90^{\circ} + \frac{1}{2} \times 50^{\circ} = 115^{\circ}$

다음 그림의 마름모 ABCD 가 정사각형이 되기 위한 조건을 모두 고르면? (정답 2 개)



- ① $\angle BAC = \angle DAC$
- ② $\angle ABD = \angle CBD$
- $\overline{AO} = \overline{CO}$
- $\overline{\text{SO}} = \overline{\text{BO}}$

해설

- ③ 평행사변형에서 이웃하는 두 각의 합은 180° 인데 ∠DAB = ∠ABC 이면, ∠DAB = ∠ABC = 90°가 되어 □ABCD 는 네 변의 길이가 모두
- 같고, 네 내각의 크기가 모두 같으므로 정사각형이 된다.
- 되면 $\overline{AO}=\overline{BO}=\overline{CO}=\overline{DO}$ 가 되어 $\Box ABCD$ 는 직사각형이 된다. 따라서 $\Box ABCD$ 는 네 변의 길이가 모두 같고 네 내각의

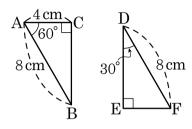
⑤ 평행사변형에서 $\overline{AO} = \overline{CO}$. $\overline{BO} = \overline{DO}$ 인데 $\overline{AO} = \overline{BO}$ 가

크기가 모두 같으므로 정사각형이 된다.

4. 사다리꼴, 평행사변형, 직사각형, 마름모, 정사각형의 관계를 나타낸 것 중 옳은 것을 모두 고르면?

- ③ 정사각형은 직사각형이며 마름모이다.
- ② 사다리꼴은 직사각형이다.
- ③ 평행사변형은 마름모이다.
- ④ 평행사변형은 사다리꼴이다.
- ⑤ 평행사변형은 마름모이다.

5. 두 직각삼각형 ABC, DEF 가 다음 그림과 같을 때, $\overline{\text{EF}}$ 의 길이는?



① 5cm

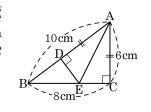
- ② 4.5cm
- ④ 3.5cm ⑤ 3cm

34cm

~ 해설} △ABC,△FDE 는 RHA 합동

 $\therefore \overline{\mathrm{EF}} = \overline{\mathrm{CA}} = 4\mathrm{cm}$

주각삼각형 ABC 에서 AC = AD, AB⊥DE 이다. AB = 10cm, BC = 8cm, AC = 6cm 일 때, 삼각형 BED 의 둘레는 삼각형 ABC 의 몇 배인가?

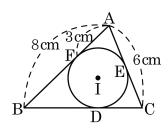


①
$$\frac{1}{3}$$
 배 ② $\frac{1}{2}$ 배 ④ $\frac{1}{5}$ 배 ⑤ $\frac{1}{6}$ 배

$$\triangle ACE \equiv \triangle ADE(RHS 합동)$$
 이므로 $\overline{DE} = \overline{EC}$, $\overline{AD} = \overline{AC}$ \therefore $\overline{BD} = 4cm$ $\triangle BDE$ 에서 $\overline{DE} + \overline{BE} = \overline{EC} + \overline{BE} = \overline{BC} = 8cm$ 이므로 $\triangle BDE$ 의 둘레의 길이= $4 + 8 = 12(cm)$ $\triangle ABC = 10 + 8 + 6 = 24(cm)$ 이므로 $\frac{1}{2}$ 배이다.

 $3 \frac{1}{4}$

7. 다음 그림에서 점 I 는 $\triangle ABC$ 의 내심이고 세 점 D, E, F 는 각각 내접원의 접점이다. $\overline{AB}=8cm$, $\overline{AF}=3cm$, $\overline{AC}=6cm$ 일 때, \overline{BC} 의 길이를 구하여라. (단, 단위는 생략한다.)



cm

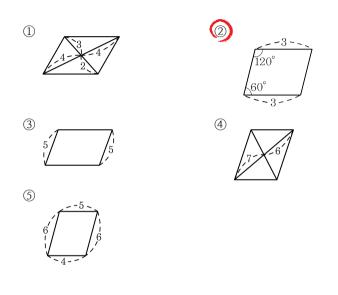
답:▷ 정답: 8cm

해설

점 I 가 삼각형의 내심이므로 $\overline{AE}=\overline{AF},\overline{BF}=\overline{BD},\overline{CE}=\overline{CD}$ 이다. $\overline{AE}=\overline{AF}=3\mathrm{cm}$ 이므로 $\overline{CD}=3\mathrm{cm}=\overline{CE}$, $\overline{BF}=8-3=5=\overline{BD}$ 이다.

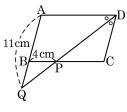
 $\therefore \overline{BC} = \overline{BD} + \overline{DC} = 5 + 3 = 8(cm)$

8. 다음 중 평행사변형인 것을 고르면?



평행사변형은 한 쌍의 대변이 평행하고 그 길이가 같다.

9. 다음 그림의 평행사변형 ABCD 에서 AD+ DC 의 값을 구하여라.



▷ 정답: 18 cm

답:

해설
$$\Delta BQP \uparrow \overline{BQ} = \overline{BP} \ 0 \ 0 등 변삼각형이므로$$

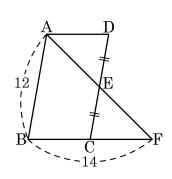
$$\overline{DC} = \overline{AB} = 11 - 4 = 7(cm)$$

$$\Delta AQD \uparrow \overline{AQ} = \overline{AD} \ 0 \ 0 등 변삼각형이므로$$

cm

 $\overline{AD} = \overline{AQ} = 11(\text{cm})$ $\overline{AD} + \overline{DC} = 11 + 7 = 18(\text{cm})$

10. 다음 그림과 같은 평행사변형 ABCD에서 \overline{CD} 의 중점을 E , \overline{AE} 의 연장선과 \overline{BC} 의 연장선의 교점을 F라 할 때, \overline{AD} 의 길이는?

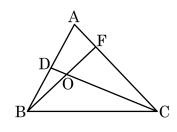


① 6 ② 7 ③ 8 ④ 9 ⑤ 10

 \triangle ADE \equiv \triangle FCE(SAS) 이므로 $\overline{AD} = \overline{FC}$ □ABCD가 평행사변형이므로 $\overline{AD} = \overline{BC}$ 따라서 $\overline{BC} = \overline{FC} = \overline{AD}$ $2 \times \overline{BC} = 14$ 에서 $\overline{BC} = 7$ 이므로 $\overline{AD} = 7$ 이다.

해설

11. 다음 그림과 같은 $\triangle ABC$ 에서 $\overline{AD}: \overline{DB}=1:1, \overline{DO}: \overline{OC}=1:6,$ $\overline{AF}: \overline{FC}=1:3$ 이다. $\triangle ABC$ 의 넓이가 560일 때, $\triangle COF$ 의 넓이를 구하여라.



▶ 답:

▷ 정답: 180

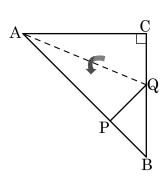
$$\triangle CAD = \frac{1}{2} \triangle ABC = \frac{1}{2} \times 560 = 280$$

$$\overline{AO}$$
를 그으면 $\triangle ADO: \triangle ACO = 1:6$ 이므로 $\triangle ACO = \frac{6}{7}\triangle CAD = \frac{6}{7}\times 280 = 240$

또, $\triangle AOF : \triangle COF = 1 : 3 이므로$

$$\triangle COF = \frac{3}{4} \triangle ACO = \frac{3}{4} \times 240 = 180$$

12. 직각이등변삼각형 모양의 종이를 다음 그림과 같이 접었다. 다음 중 옳지 않은 것은?



①
$$\triangle APQ \equiv \triangle ACQ$$

$$\bigcirc$$
 $\angle PAQ = \angle CAQ$

$$\bigcirc$$
 $\angle APQ = 90^{\circ}$

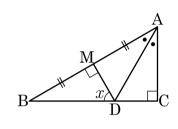
 $\triangle APQ \equiv \triangle ACQ, \overline{AP} = \overline{AC}, \angle PAQ = \angle CAQ, \angle APQ = \angle ACQ = 90^{\circ}$

13. 직사각형 모양의 종이를 다음 그림과 같이 접었을 때, ∠BCD = 40°이다. 이때, ∠BAC 의 크기를 구하여라.

•	답:		

▷ 정답: 100°

∠BCD = ∠BCA = 40° ∠BCD = ∠ABC = 40° (엇각) ∠BAC = 180° - 80° = 100° 14. 다음 그림에서 $\triangle ABC$ 는 직각삼각형이고 \overline{AD} 는 $\angle BAC$ 의 이등분선이다. $\overline{AB} \bot \overline{DM}$, $\overline{AM} = \overline{BM}$ 일 때, $\angle x$ 의 크기는?



①
$$45^{\circ}$$
 ② 50° ③ 55° ④ 60° ⑤ 65°

△ADM ≡ △ADC (RHA 합동) 이므로 ∠ADM = ∠ADC··· ①
△MBD ≡ △MAD (SAS 합동) 이므로 ∠DAM = ∠DBM··· ⑥
①, ⑥에서
$$3x = 180^{\circ}$$
∴ $\angle x = 60^{\circ}$

15. 어떤 직각삼각형 ABC의 외접원의 원의 넓이가 $36\pi~{
m cm}^2$ 이라고 할때, 이 직각삼각형의 빗변의 길이는?

① 4cm ② 6 cm ③ 9cm ④ 12cm ⑤ 18cm

해설 직각삼각형의 외심은 빗변의 중심에 위치하므로 ΔABC의 외접원의 중심은 빗변의 중점이다. 외접원의 넓이가 36πcm² 이므로 반지름의 길이는 6cm 이다. 따라서 이 삼각형의 빗변의 길이는 외접원의 지름의 길이와 같으므로 12cm 이다.

16. $\angle A = 90^{\circ}$, $\overline{AB} = 3$, $\overline{AC} = 4$, $\overline{BC} = 5$ 인 삼각형 ABC 의 외심을 O, 점 A 에서 변 BC 에 내린 수선의 발을 D 라 한다. $\overline{CD} = a$ 라 할 때, AOD 의 넓이를 a 를 사용하여 나타낸 것은?

①
$$3 + 2a$$

④ $\frac{2a}{5} - 3$

$$3 - \frac{a}{2}$$

점 D 에서
$$\overline{AO}$$
 에 내린 수선의 발을 E 라 하면 점 O 는 직각삼각형 ABC 의 외심이므로 \overline{OA} \overline{OB} \overline{OB} \overline{OB} \overline{OB}

$$\overline{OA} = \overline{OB} = \overline{OC} = \frac{5}{2}$$

$$\triangle ABC = \frac{1}{2} \times \overline{AB} \times \overline{AC} = \frac{1}{2} \times \overline{BC} \times \overline{AD}$$
 에서 $\frac{1}{2} \times 4 \times 3 = \frac{1}{2} \times 5 \times \overline{AD}$

$$\therefore \overline{AD} = \frac{12}{5}$$
 이때, $\overline{CD} = a$ 라 하면

$$\triangle AOD = \frac{1}{2} \times \left(a - \frac{5}{2} \right) \times \frac{12}{5} = \frac{6}{5} a - 3$$
 이다.

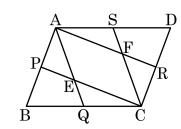
17. 다음 그림의 평행사변형 ABCD 에서 BE = CE 이고 AD = 10 cm, AB = 7 cm 일 때, DF 의 길이는?

① 7 cm ② 9 cm ③ 14 cm
④ 16 cm ⑤ 18 cm

F

$$\overline{AB} = \overline{DC} = 7 \, \text{cm}, \ \overline{BE} = \overline{CE} = 5 \, \text{cm}$$
 $\angle AEB = \angle FEC \ (맞꼭지각)$
 $\angle ABE = \angle FCE \ (엇각)$
 $\triangle ABE \equiv \triangle FCE, \overline{AB} = \overline{FC} = 7 \, \text{cm}$
 $\therefore \overline{DF} = \overline{DC} + \overline{FC} = 14(\, \text{cm})$

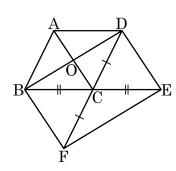
18. 평행사변형 ABCD 에서 각 변의 중점을 P, Q, R, S 라 할 때, 다음 그림에서 생기는 평행사변형은 □ABCD 를 포함해서 몇 개인지를 구하여라.



① 1 개 ② 2 개 ③ 3 개 <mark>④</mark> 4 개 ⑤ 5 개

해설

19. 평행사변형 ABCD 의 두 변 BC, DC 의 연장선 위에 $\overline{BC} = \overline{CE}$, $\overline{DC} = \overline{CF}$ 가 되도록 두 점 E, F 를 잡을 때, $\Box ABCD$ 를 제외한 사각 형이 평행사변형이 되는 조건은 보기에서 모두 몇 개인가?

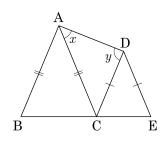


- 두 쌍의 대변이 각각 평행하다.
- 戶 쌍의 대변의 길이가 각각 같다.
- © 두 쌍의 대각의 크기가 각각 같다.
- ② 두 대각선이 서로 다른 것을 이등분한다.
- ② 한 쌍의 대변이 평행하고 그 길이가 같다.
- ① 1개

- 2개 ③ 3개 ④ 4개 ⑤ 5개

해설

평행사변형이 되는 조건은 □ABFC,□ACED가 평행사변형이되 는 조건 ②과 □BFED가 평행사변형이 되는 조건 ②로 2개이다. **20.** 다음 그림과 같이 \triangle ABC, \triangle DCE는 이등 면삼각형이고 \angle A = 38°, \angle DCE = 72° 라 할 때, \angle x + \angle y의 값 구하여라.



$$\angle ABC = \frac{1}{2}(180^{\circ} - 38^{\circ}) = 71^{\circ}$$

△ABC에서 ∠A = 38°인 이등변삼각형이므로

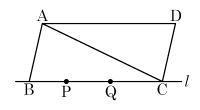
따라서
$$\square ABED$$
 에서 $\angle x + \angle y + 38^{\circ} + 71^{\circ} + 72^{\circ} + 36^{\circ} = 360^{\circ}$

$$\therefore \ \angle x + \angle y = 143^{\circ}$$

21. 평행사변형 ABCD 에서 \overline{AC} 를 긋고 $\angle DAC$ 의 이등분선이 \overline{BC} 의 연장선과 만나는 점을 E 라 한다. 이 때, $\angle B = 42^\circ$, $\angle E = 28^\circ$ 일 때, $\angle C$ 의 크기를 구하여라.

 $\triangle ACD$ 에서 $\angle x = \angle ACD = 180^{\circ} - (56^{\circ} + 42^{\circ}) = 82^{\circ}$

22. 다음과 같이 직선 l 위에 변 BC 를 가지고, $\overline{AB}=4$, $\overline{AC}=\overline{AD}=9$ 인 평행사변형 ABCD 가 있다. 변 BC 위에 한 점 P 가 점 B 에서 C 까지 움직일 때, $\angle PAD$ 의 이등분선이 직선 l 과 만나는 점 Q 가 움직이는 거리를 구하여라.



답:

➢ 정답: 14

해설

∠AQP 따라서 삼각형 APQ 는 이등변삼각형이다.

(1) 점 P 가 점 B 에 있을 때

점 Q 는 점 B 로부터 $\overline{AB}=4$ 만큼 떨어진 위치에 있게 된다.

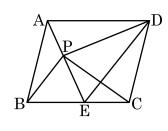
∠PAQ = ∠DAQ 이고 변 AD 와 BC 는 평행하므로 ∠DAQ =

(2) 점 P 가 점 C 에 있을 때

점 Q 는 점 C 로부터 $\overline{AC} = 9$ 만큼 떨어진 위치에 있게 된다.

따라서 (1), (2) 에서 점 Q 가 움직인 거리는 (9-4)+9=14 이다.

23. 다음 그림의 평행사변형 ABCD에서 \overline{AP} : $\overline{PE} = 3$: 4이고 $\triangle PBC = 40 \text{cm}^2$ 일 때, $\triangle APD$ 의 넓이를 구하여라.



내부의 한 점 P에 대하여 $\triangle PAB + \triangle PCD = \triangle PAD + \triangle PBC$

 답:
 cm²

 > 정답:
 30 cm²

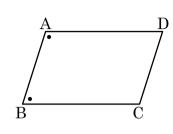
$$\triangle PAD + \triangle PBC = \frac{1}{2} \square ABCD \cdots \bigcirc$$

$$\triangle PAD + \triangle PED = \frac{1}{2} \square ABCD \cdots \square$$

$$\triangle PAD: 40 = 3: 4$$
$$\triangle PAD = \frac{40 \times 3}{4}$$

$$\therefore \ \triangle PAD = 30 (cm^2)$$

24. $\angle A = \angle B$ 인 평행사변형에서 \overline{AB} : $\overline{AD} = 1$: 4 이고, 넓이가 36cm^2 일 때. \overline{BC} 의 길이를 구하여라.



cm

 답:

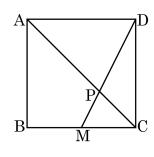
 ▷ 정답:
 12 cm

 $a \times 4a = 4a^2 = 36$, $a^2 = 9$

 $\therefore a = 3 \ (\ \because a > 0 \)$

 $\therefore \overline{BC} = \overline{AD} = 4a = 12(cm)$

25. 다음 그림의 정사각형 ABCD에서 점 M은 B, C 의 중점이다. $\Delta PMC = 6 \, cm^2$ 일 때, $\Box ABCD$ 의 넓이를 구하여라.



 cm^2

