1.
$$(2x+3y)^2 = ax^2 + bxy + cy^2$$
 일 때, 상수 a , b , c 의 합 $a+b+c$ 의 값은?

$$(2x)^2 + 2 \times 2x \times 3y + (3y)^2 = 4x^2 + 12xy + 9y^2$$
 이므로 $a+b+c=4+12+9=25$ 이다.

•
$$(2x+a)^2 = 4x^2 + bx + 9$$
 일 때, ab 의 값은? (단, a , b 는 상수)

$$(2x + a)^{2} = 4x^{2} + 4ax + a^{2}$$

$$4x^{2} + 4ax + a^{2} = 4x^{2} + bx + 9$$

$$\therefore 4a = b, \ a^{2} = 9$$

$$\therefore ab = 4a^{2} = 36$$

3.
$$\left(\frac{3}{4}x + \frac{1}{2}y\right)^2 = ax^2 + bxy + cy^2$$
 일 때, 상수 a , b , c 의 함 $a + b + c$ 의 값은?

 $\Im \frac{29}{16}$

해설
$$\left(\frac{3}{4}x\right)^2 + 2 \times \frac{3}{4}x \times \left(\frac{1}{2}y\right) + \left(\frac{1}{2}y\right)^2$$

① $\frac{25}{16}$ ② $\frac{13}{8}$ ③ $\frac{27}{16}$ ④ $\frac{7}{4}$

 $= \frac{9}{16}x^2 + \frac{3}{4}xy + \frac{1}{4}y^2$

 $\therefore a+b+c=\frac{9}{16}+\frac{3}{4}+\frac{1}{4}=\frac{25}{16}$

4.
$$\left(4 + \frac{3}{2}x\right)^2 + a = \frac{9}{4}x^2 + bx + 15$$
 일 때, 상수 a, b 의 합 $a + b$ 의 값은?

① 13

해설
$$\left(\frac{3}{2}x\right)^2 + 2 \times \frac{3}{2}x \times 4 + 4^2 + a$$

$$= \frac{9}{4}x^2 + 12x + 16 + a$$

$$16 + a = 15$$

$$a = -1, b = 12$$

$$\therefore a + b = 11$$

5.
$$\left(\frac{3}{4}x+2\right)^2+3a=bx^2+cx+8$$
 일 때, 상수 a, b, c 에서 abc 의 값은?

①
$$\frac{11}{4}$$
 ② $\frac{9}{4}$ ③ 2 ④ 4 ⑤ 6

$$= \frac{9}{16}x^{2} + 3x + 4 + 3a$$

$$4 + 3a = 8$$

$$a = \frac{4}{3}, b = \frac{9}{16}, c = 3$$

$$\therefore abc = \frac{4}{3} \times \frac{9}{16} \times 3 = \frac{9}{4}$$

 $\left(\frac{3}{4}x\right)^2 + 2 \times \frac{3}{4}x \times 2 + 2^2 + 3a$

6. $a*b = (a+b)^2$ 으로 정의할 때, 2x*(-y) + x*2y를 간단히 하면??

①
$$2x^2 + 2y^2$$
 ② $3x^2 + 3y^2$ ③ $4x^2 + 4y^2$
④ $5x^2 + 5y^2$ ⑤ $6x^2 + 6y^2$

$$(2x - y)^{2} + (x + 2y)^{2}$$

$$= 4x^{2} - 4xy + y^{2} + x^{2} + 4xy + 4y^{2}$$

$$= 5x^{2} + 5y^{2}$$

 $(1) (x+2)^2 = x^2 + 4x + 4$

7. 다음 중 옳지 않은 것은?

$$(1) (x+2)^2 = x^2 + 4x + 4$$

②
$$(x-3)^2 = x^2 - 6x + 9$$

③ $(x-1)^2 = x^2 - 2x - 1$

$$(x+2y)^2 = x^2 + 4xy + 4y^2$$

$$(x - 5y)^2 = x^2 - 10xy + 25y^2$$

$$3 (x-1)^2 = x^2 - 2x + 1$$

3. $(2x-5)^2 = px^2 + qx + 25$ 일 때, 상수 p, q 에 대하여 p-q 의 값은?

3 36

1 24

② 30

해설
$$(2x)^2 - 2 \times 2x \times 5 + 5^2 = 4x^2 - 20x + 25$$
이므로 $p - q = 4 - (-20) = 24$

9.
$$(3x-a)^2 = 9x^2 + 24x + b$$
 일 때, $a+b$ 의 값은?(단, a, b 는 상수)

$$(3x)^2 - 2 \times 3x \times a + (-a)^2 = 9x^2 - 6ax + a^2$$
 이므로
 $-6a = 24, \quad a = -4$
 $b = a^2 = 16$

 $\therefore a + b = (-4) + 16 = 12$

10.
$$(3x - A)^2 = 9x^2 - Bx + 9$$
 일 때, A , B 에 알맞은 자연수를 차례로 구하면?

$$(3x)^2 - 2 \times 3x \times A + A^2 = 9x^2 - 6Ax + A^2$$
 이므로 $A^2 = 9$, $A = 3(\because A 는 자연수)$ $B = 6A = 18$

A = 3, B = 18

11. 다음 중에서 전개하였을 때의 전개식이 $(-x+y)^2$ 과 같은 것은?

①
$$(x-y)^2$$
 ② $(x+y)^2$ ③ $-(x-y)^2$

$$(4) -(x+y)^2$$
 $(5) (-x-y)^2$

12. $(x-y)^2$ 과 전개식이 같은 것은?

①
$$(x+y)^2$$

 $(4) -(x-y)^2$

$$\bigcirc (-x+y)^2$$

$$(5) (-x-y)^2$$

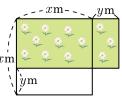
 $(3) -(x+y)^2$

$$(x - y)^2 = x^2 - 2xy + y^2$$

①
$$(x+y)^2 = x^2 + 2xy + y^2$$

② $(-x+y)^2 = x^2 - 2xy + y^2$

$$3 - (x + y)^2 = -x^2 - 2xy - y^2$$
$$4 - (x - y)^2 = -x^2 + 2xy - y^2$$


$$(-x - y)^2 = x^2 + 2xy + y^2$$

13. 다음 중
$$\left(x - \frac{3}{2}\right)^2$$
 을 전개한 것은?

①
$$x^2 + \frac{3}{2}x + \frac{3}{4}$$
 ② $x^2 - \frac{3}{2}x + \frac{1}{4}$ ③ $x^2 - x + \frac{1}{4}$ ④ $x^2 - 3x + \frac{3}{4}$ ⑤ $x^2 - 3x + \frac{9}{4}$

해설
$$x^2 - 2 \times x \times \frac{3}{2} + \left(\frac{3}{2}\right)^2 = x^2 - 3x + \frac{9}{4}$$

14. 아람이네 가족은 다음 그림과 같이 한 변의 길이가 xm 인 정사각형의 꽃밭을 가로의 길이는 ym(x > y) 늘이고, 세로의 길이는 ym 줄여서 새로운 꽃밭을 만들기로 하였다. 꽃밭의 넓이는?

①
$$(x+y)^2 = x^2 + 2xy + y^2 (m^2)$$

②
$$(x-y)^2 = x^2 - 2xy + y^2$$
(m²)

$$(3)(x+y)(x-y) = x^2 - y^2(m^2)$$

$$(x+y)(x-y) = x^2 + y^2(m^2)$$

⑤
$$(x+y)(x+y) = x^2 + y^2(m^2)$$

새로운 꽃밭의 가로의 길이 (x+y) m, 세로의 길이 (x-y) m 꽃밭의 넓이 : $(x+y)(x-y) = x^2 - y^2$ (m^2)

15.
$$\left(5a - \frac{1}{3}b\right)\left(5a + \frac{1}{3}b\right)$$
 를 전개하면?

①
$$5a^2 - \frac{1}{3}b^2$$
 ② $5a^2 - \frac{2}{3}b^2$
④ $25a^2 - \frac{2}{3}b^2$ ⑤ $25a^2 - \frac{1}{9}b^2$

$$3 10a^2 - \frac{1}{9}b^2$$

$$(5a)^2 - \left(\frac{1}{3}b\right)^2 = 25a^2 - \frac{1}{9}b^2$$

16.
$$(-2x + 5y)(2x + 5y) - (3x + 4y)(3x - 4y)$$
 를 간단히 하면?

①
$$-13x^2 + 41y^2$$
 ② $-15x^2 + 16y^2$ ③ $-15x^2 + 31y^2$
④ $-41x^2 + 10y^2$ ⑤ $-45x^2 + 16y^2$

17.
$$(x+a)(x-4) = x^2 - b^2$$
 일 때, $a+b$ 의 값은? (단, $b>0$)

$$(x+a)(x-4) = x^2 + (a-4)x - 4a = x^2 - b^2$$

 $a-4=0$ 이므로 $a=4$
 $b^2=4a=16$ 이므로 $b=4$ (∵ $b>0$)

a + b = 4 + 4 = 8

18.
$$a^2 = 12, b^2 = 18$$
 일 때, $\left(\frac{1}{2}a + \frac{2}{3}b\right)\left(\frac{1}{2}a - \frac{2}{3}b\right)$ 의 값은?

①
$$-9$$
 ② -8 ③ -6 ④ -5 ⑤ -3

$$\left(\frac{1}{2}a + \frac{2}{3}b\right)\left(\frac{1}{2}a - \frac{2}{3}b\right) = \left(\frac{1}{2}a\right)^2 - \left(\frac{2}{3}b\right)^2$$

$$= \frac{1}{4}a^2 - \frac{4}{9}b^2$$

$$= \frac{1}{4} \times 12 - \frac{4}{9} \times 18$$

$$= 3 - 8 = -5$$

19. 다음 그림과 같이 한 변의 길이가 am 인 정사 각형의 모양의 화단을 가로와 세로를 각각 1m , 2m 만큼 늘릴 때, 화단의 넓이는?

③
$$(a^2 + 2a + 1)$$
m²
⑤ $(a^2 + 6a + 9)$ m²

(1) $(a^2 - 3a + 2)$ m²

 $(4) (a^2 - 4a + 4) m^2$

 $(2)(a^2+3a+2)m^2$

해설 늘어난 화단의 가로의 길이 (a+1) m , 세로의 길이 (a+2) m 따라서 화단의 넓이는 $(a+1)(a+2)=a^2+3a+2$ 이다. **20.** 곱셈 공식을 이용하여 (x+3)(x+a) 를 전개한 식이 $x^2+bx-12$ 이다. 이때 상수 a, b 의 값을 구하여라.

- - 답:

▶ 답:

- ▷ 정답: a = -4
- \triangleright 정답: b=-1

(x+3)(x+a) = x² + (a+3)x + 3a 가 x² + bx - 12 이므로 a+3=b, 3a = -12 이다. 따라서 a = -4, -4+3=b, b = -1 이다. **21.** 곱셈 공식을 이용하여 (x+a)(x+5) 를 전개한 식이 $x^2+bx-15$ 이다. 이때, 상수 a,b 의 값을 차례대로 구하여라.

▶ 답:

$$\triangleright$$
 정답: $a = -3$
 \triangleright 정답: $b = 2$

$$(x+a)(x+5) = x^2 + (a+5)x + 5a$$
가 $x^2 + bx - 15$ 이므로 $a+5=b$, $5a=-15$ 이다.

따라서 a = -3, -3 + 5 = b, b = 2 이다.

①
$$(x+7)(x-5) = x^2 - 2x - 35$$

②
$$(x-2)(x-3) = x^2 + 6$$

③
$$(x+3)(x+4) = x^2 + x + 12$$

$$\underbrace{4} \left(x - \frac{2}{7}\right) \left(x - \frac{3}{5}\right) = x^2 - \frac{31}{35}x + \frac{6}{35}$$

$$\underbrace{5} \left(x - \frac{1}{2}\right) \left(x + \frac{1}{3}\right) = x^2 - \frac{5}{6}x - \frac{1}{6}$$

①
$$(x+7)(x-5) = x^2 + 2x - 35$$

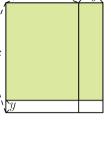
② $(x-2)(x-3) = x^2 - 5x + 6$

③
$$(x+3)(x+4) = x^2 + 7x + 12$$

⑤ $\left(x - \frac{1}{2}\right)\left(x + \frac{1}{2}\right) = x^2 - \frac{1}{2}x - \frac{1}{2}$

23. (x+A)(x+B) 를 전개하였더니 x^2+Cx+8 이 되었다. 다음 중 C 의 값이 될 수 없는 것은? (단, A, B, C 는 정수이다.)

해설
$$(x+A)(x+B) = x^2 + (A+B)x + AB = x^2 + Cx + 8$$
이므로
$$A+B=C, AB=8$$
이다. 따라서 $C=(1+8, 2+4, -1-8, -2-4)=(9, 6, -9, -6)$ 이다.


24. 다음 그림에서 색칠한 부분의 넓이를 x, y 에 -2x--2y대한 식으로 바르게 나타낸 것은? ① $(2x + 2y)(3x + y) = 6x^2 + 8xy + 2y^2$ 3x

(1)
$$(2x + 2y)(3x + y) = 6x^2 + 8xy + 2y^2$$

(2) $(2x - 2y)(3x + y) = 6x^2 - 4xy - 2y^2$

$$(3)(2x+2y)(3x-y) = 6x^2 + 4xy - 2y^2$$

$$(4)(3x+2y)(2x-y) = 6x^2 + xy - 2y^2$$

$$(3x - 2y)(2x + y) = 6x^2 - xy - 2y^2$$

색칠한 부분의 가로의 길이는 (2x + 2v). 세로의 길이는 (3x - y) 이다. 따라서 색칠한 부분의 넓이는

 $(2x + 2y)(3x - y) = 6x^2 + 4xy - 2y^2$

25.
$$(5x-6)(4x+3)$$
 \triangleq 전개한 식은?

①
$$20x^2 + 2x - 18$$

$$3) 20x^2 + 6x - 18$$

$$\bigcirc$$
 $20x^2 - 9x - 18$

$$20x^2 + 4x - 18$$

$$(5x-6)(4x+3) = (5 \times 4)x^2 + \{5 \times 3 + (-6) \times 4\}x + (-6) \times 3 = 20x^2 - 9x - 18$$

26. $(-3x+4)(5x-6) = ax^2 + bx + c$ 일 때, 상수 a, b, c 에 대하여 a+b-c 의 강을 구하여라

해설
$$(-3x+4)(5x-6)$$

$$= \{(-3)\times 5\} x^2 + \{(-3\times -6) + (4\times 5)\} x + 4\times (-6)$$

$$= -15x^2 + 38x - 24$$

$$= ax^2 + bx + c$$
따라서 $a = -15, b = 38, c = -24$ 이므로 $a + b - c = 47$ 이다.

27.
$$\left(2x - \frac{1}{4}\right)\left(3x + \frac{1}{2}\right)$$
 을 전개하였을 때, x 의 계수와 상수항의 합은?

① $-\frac{1}{2}$ ② $-\frac{7}{16}$ ③ $-\frac{3}{8}$ ④ $\frac{1}{8}$ ⑤ $\frac{3}{8}$

 $6x^{2} + x - \frac{3}{4}x - \frac{1}{8} = 6x^{2} + \frac{1}{4}x - \frac{1}{8}$ $\therefore \frac{1}{4} - \frac{1}{8} = \frac{2-1}{8} = \frac{1}{8}$

28. 곱셈 공식을 이용하여 (x-a)(3x+5) 를 전개하였을 때, x 의 계수가 17 이다. 이때 상수 a 의 값을 구하여라.

$$(x-a)(3x+5) = 3x^2 + (5-3a)x - 5a$$

 x 의 계수가 17 이므로

5 - 3a = 17-3a = 12

$$\therefore a = -4$$

29. 상수
$$a, b, c$$
 에 대하여 $(3x+a)(bx+5) = 6x^2 + cx - 10$ 일 때, $a+b+c$ 의 값을 구하여라.

 $\therefore c = 11$

$$(3x+a)(bx+5) = 3bx^{2} + (15+ab)x + 5a$$

$$3bx^{2} + (15+ab)x + 5a = 6x^{2} + cx - 10$$

$$3b = 6 \qquad \therefore b = 2$$

$$5a = -10 \qquad \therefore a = -2$$

$$15+ab=c, 15+(-2) \times 2 = 15-4 = 11$$

 $\therefore a+b+c=(-2)+2+11=11$

30. 상수 a, b, c 에 대하여 $(5x+a)(bx+6)=10x^2+cx-54$ 일 때, a+b+c 의 값을 구하여라.

$$(5x+a)(bx+6) = 5bx^2 + (30+ab)x + 6a$$
$$5bx^2 + (30+ab)x + 6a = 10x^2 + cx - 54$$

$$\therefore a+b+c=-9+2+12=5$$