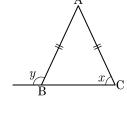
1. 다음 그림과 같은 $\triangle ABC$ 에서 $\overline{AB} = \overline{AC}$ 일 때, $\angle x + \angle y$ 의 크기를 구하여라.



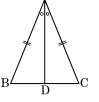
답: _____ °

ABC 에서 ∠BAD = ∠CAD 일 때, 다음 중 옳지 않은 것은? ① ĀD = BC ② ∠ADB = ∠ADC

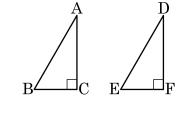
다음 그림과 같이 $\overline{AB} = \overline{AC}$ 인 이등변삼각형

2.

- $\textcircled{4} \triangle ADB \equiv \triangle ADC$
- \bigcirc $\angle B = \angle C$
- © _____



3. 다음 그림의 두 직각삼각형이 서로 합동이 되는 조건이 <u>아닌</u> 것은?

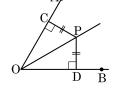


① $\overline{BC} = \overline{EF}, \ \overline{AC} = \overline{DF}$

4 $\angle B = \angle E$, $\angle A = \angle D$

 \bigcirc $\overline{AB} = \overline{DE}, \overline{AC} = \overline{DF}$

∠AOB 의 내부에 한 점 P 에서 두 변 OA, OB 에 내린 수선의 발을 각각 C, D 라고 할 때, PC = PD 이면 △COP ≡ △DOP 임을 증명하기 위해서 이용한 합동조건은?

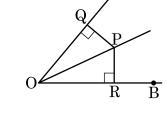


④ RHA 합동

① SSS 합동

- ② SAS 합동⑤ RHS 합동
- ③ ASA 합동

5. 다음 그림과 같이 $\angle AOB$ 의 내부의 한 점 P 에서 각 변에 수선을 그어 그 교점을 Q,R 이라 하자. $\overline{PQ}=\overline{PR}$ 이라면, \overline{OP} 는 $\angle AOB$ 의 이등분선임을 증명하는 과정에서 $\triangle QOP \equiv \triangle ROP$ 임을 보이게 된다. 이 때 사용되는 삼각형의 합동 조건은?

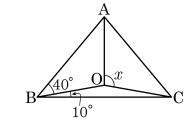


② 한 변과 그 양 끝 각이 같다.

① 두 변과 그 사이 끼인각이 같다.

- ③ 세 변의 길이가 같다.
- ④ 직각삼각형의 빗변과 한 변의 길이가 각각 같다.
- ⑤ 직각삼각형의 빗변과 한 예각의 크기가 각각 같다.

6. 다음 그림에서 점 O가 삼각형 ABC의 외심일 때, $\angle x$ 의 크기를 구하여라.



〕답: _____ °

7. 다음 그림에서 점 I 는 \triangle ABC의 내심이다. $\overline{\text{ID}}=3\text{cm}$ 일 때, x+y의 길이는?

D-3cm F

③ 6cm

 \bigcirc 7cm

 \bigcirc 8cm

 \bigcirc 5cm

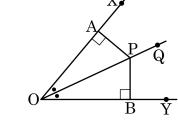
① 4cm

8. 다음 그림에서 점 I가 \triangle ABC의 내심일 때, \angle IBA = 25°, \angle BCA = 40°이다. $\angle x$ 의 크기를 구하여라.

25° I 40° (

> 답: _____ °

9. 다음은 XOY 의 이등분선 위의 한 점 P 라 하고 점 P 에서 $\overline{OX}, \overline{OY}$ 에 내린 수선의 발을 각각 A, B 라고 할 때, $\triangle AOP \equiv \triangle BOP$ 임을 나타내기 위해서 이용한 합동조건은?



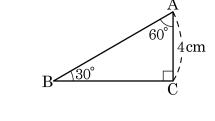
④ RHA 합동 ⑤ RHS 합동

① SSS 합동

- ② SAS 합동

③ AAA 합동

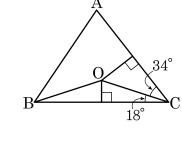
 ${f 10}$. 다음 직각삼각형 ${f ABC}$ 에서 ${f AB}$ 의 길이를 구하여라.



) 답: _____ cm

- **11.** 다음은 두 직각삼각형을 나타낸 그림이다. 점 O,P 는 각각 삼각형의 빗변의 중심에 위치한다고 할 때, x+y 의 값을 구하여라.

12. 다음 그림의 ABC 에서 점 O 는 외심이다. ∠OCA = 34°, ∠OCB = 18°일 때, ∠OBA 의 크기는?

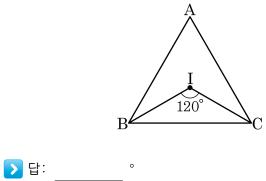


4 38°

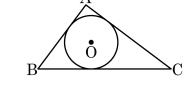
⑤ 52°

① 18° ② 34° ③ 36°

13. 다음 그림에서 점 I 는 \triangle ABC 의 내심이다. \angle BIC = 120° 일 때, \angle BAC 의 크기를 구하여라.



14. 다음 그림과 같이 $\triangle ABC$ 에서 점 O 는 내심이다. 내접원의 반지름이 $3~{\rm cm}$ 이고, $\triangle ABC$ 의 넓이가 $36~{\rm cm}^2$ 일 때, $\triangle ABC$ 의 둘레의 길이를 구하여라



 $318 \,\mathrm{cm}$

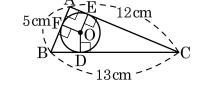
4 21 cm

 \bigcirc 24 cm

 $2 12 \,\mathrm{cm}$

 $\bigcirc 9 \, \mathrm{cm}$

15. △ABC 에서 점 O 는 내접원의 중심이고 각 변의 길이가 다음과 같이 주어져있다. 이때, 내접원의 반지름의 길이는?



4 2.5 cm

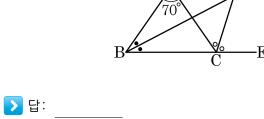
 $\bigcirc 0.5\,\mathrm{cm}$

⑤ 3 cm

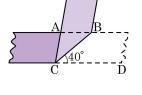
2 1 cm

3 2 cm

16. 다음 그림과 같이 $\overline{AB}=\overline{AC}$ 인 이등변삼각형 $\triangle ABC$ 에서 $\angle C$ 의 외각 의 이등분선과 $\angle B$ 의 이등분선의 교점을 D 라고 하자. $\angle A=70^\circ$ 일 때, ∠BDC 의 크기를 구하여라.

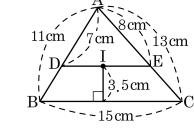


17. 직사각형 모양의 종이를 다음 그림과 같이 접었을 때, ∠BCD = 40°이다. 이때, ∠BAC 의 크기를 구하여라.



> 답: _____ °

18. 다음 그림에서 점 I 는 삼각형 ABC 의 내심이고 $\overline{\rm DE}//\overline{\rm BC}$ 일 때, $\Box {\rm DBCE}$ 의 넓이는 얼마인가?



 44cm^2

 \bigcirc 46cm²

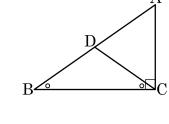
 \bigcirc 40cm^2

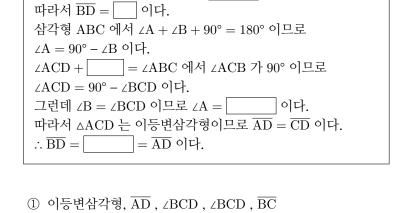
 342cm^2

19. $\angle B = \angle C$ 인 이등변삼각형 ABC 의 외심 O, 내심 I 에 대하여 $\angle BOC = 128$ ° 일 때, $\angle OBI$ 의 크기를 구하여라.

합: _____ °

 ${f 20}$. 다음은 직각삼각형 ABC 에서 ${f AB}$ 위의 ${\it \angle B}={\it \angle BCD}$ 가 되도록 점 D 를 잡으면 $\overline{\mathrm{AD}}=\overline{\mathrm{BD}}=\overline{\mathrm{CD}}$ 임을 증명하는 과정이다. 빈칸에 알맞은 것을 순서대로 써 넣은 것은?





 $\angle B = \angle BCD$ 이므로 $\triangle BCD$ 는 이다.

- ② 이등변삼각형, $\overline{\text{CD}}$, $\angle{\text{BCD}}$, $\angle{\text{ACD}}$, $\overline{\text{CD}}$
- ③ 이등변삼각형, $\overline{\mathrm{AD}}$, $\angle\mathrm{ACD}$, $\angle\mathrm{ACD}$, $\overline{\mathrm{AC}}$
- ④ 직각삼각형, $\overline{\text{CD}}$, $\angle \text{ACD}$, $\angle \text{BCD}$, $\overline{\text{AC}}$ ⑤ 직각삼각형, $\overline{\mathrm{AD}}$, $\angle\mathrm{BCD}$, $\angle\mathrm{ACD}$, $\overline{\mathrm{BC}}$