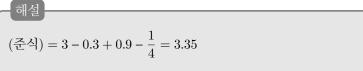
1.
$$\sqrt{\sqrt{81}} - \sqrt{0.09} + \sqrt{(0.9)^2} - \sqrt{\frac{1}{16}}$$
 을 계산하면?



2. $2 \le \sqrt{x} < 3$ 을 만족하는 자연수 x의 개수를 구하여라.

▷ 정답: 5개

 $2 \le \sqrt{x} < 3$ 는 $\sqrt{4} \le \sqrt{x} < \sqrt{9}$ 이므로 $4 \le x < 9$ 이다. 따라서 자연수 x는 $4,\ 5,\ 6,\ 7,\ 8$ 로 5개이다.

3. $\sqrt{5}(\sqrt{10} + \sqrt{2}) + \sqrt{2}(2\sqrt{5} + 2)$ 를 간단히 하면 $a\sqrt{10} + b\sqrt{2}$ 가 된다. 이 때, a + b 의 값을 구하여라.

$$ightharpoonup$$
 정답: $a+b=10$

해설
$$\sqrt{50} + \sqrt{10} + 2\sqrt{10} + 2\sqrt{2} = 3\sqrt{10} + 7\sqrt{2}$$
이므로 $a = 3, b = 7$ 이다. 따라서 $a + b = 3 + 7 = 10$ 이다.

$$x^2 + x + \frac{1}{4}$$

②
$$x^2 + 8xy - 16y^2$$

다음 중 $(a \pm b)^2$ 의 형태로 인수분해되는 것은?

$$3 4x^2 + 6x + 9$$

$$4 x^2 + 16$$

해설
$$a^2 + 2 \times$$

$$a^{2} \pm 2 \times a \times b + b^{2} = (a \pm b)^{2}$$
① $x^{2} + x + \frac{1}{4} = \left(x + \frac{1}{2}\right)^{2}$

5. $1^2 - 3^2 + 5^2 - 7^2 + 9^2 - 11^2$ 의 값을 구하여라.

해설
$$(1-3)(1+3) + (5-7)(5+7) + (9-11)(9+11)$$
$$= -2(1+3+5+7+9+11)$$

 $= -2 \times 36$ = -72

6.
$$(-\sqrt{5})^2$$
 의 제곱근은?

①
$$\sqrt{5}$$

②
$$-\sqrt{5}$$

①
$$\sqrt{5}$$
 ② $-\sqrt{5}$ ③ $\pm\sqrt{5}$ ④ 5

$$(-\sqrt{5})^2 = 5$$

5 의 제곱근: $\pm \sqrt{5}$

- 다음 수의 제곱근 중 근호가 없는 수로 나타낼 수 있는 것은? $\sqrt{4}$ $\sqrt{16}$ ③ 10 \bigcirc 2 ② 5 ① $\pm \sqrt{2}$ ② $\pm \sqrt{5}$
 - $3 \pm \sqrt{10}$
 - $(4) \pm 2$
 - (5) $\pm 2\sqrt{5}$

다음 중 근호를 사용하지 않고 나타낸 수로 올바른 것은?

(1)
$$-\sqrt{25} = 5$$

 $(3)(\sqrt{7})^2 = 7$

$$\sqrt{(-5)^2} = -5$$

$$(1) - \sqrt{25} = -5$$

①
$$-\sqrt{25} = -5$$

② $-\sqrt{(-6)^2} = -6$

9. 세 수 $1 + \sqrt{2}$, $\sqrt{5} + \sqrt{2}$, $\sqrt{2} + \sqrt{3}$ 를 작은 순서대로 바르게 나타낸 것은?

①
$$\sqrt{2} + \sqrt{3} < 1 + \sqrt{2} < \sqrt{5} + \sqrt{2}$$

②
$$\sqrt{2} + \sqrt{3} < \sqrt{5} + \sqrt{2} < 1 + \sqrt{2}$$

③ $1 + \sqrt{2} < \sqrt{5} + \sqrt{2} < \sqrt{2} + \sqrt{3}$

$$1 + \sqrt{2} - (\sqrt{2} + \sqrt{3}) = 1 - \sqrt{3} < 0$$

$$\therefore 1 + \sqrt{2} < \sqrt{2} + \sqrt{3}$$

$$\sqrt{2} + \sqrt{3} - (\sqrt{5} + \sqrt{2}) = \sqrt{3} - \sqrt{5} < 0$$

$$\therefore \sqrt{2} + \sqrt{3} < \sqrt{5} + \sqrt{2}$$

 $1. \ \sqrt{2} + \sqrt{3} < \sqrt{5} + \sqrt{2}$ 따라서 $1 + \sqrt{2} < \sqrt{2} + \sqrt{3} < \sqrt{5} + \sqrt{2}$ 이다.

10. 다음 수를
$$a\sqrt{b}$$
 꼴로 나타낼 때 옳지 않은 것은?

(1)
$$\sqrt{80} = 4\sqrt{5}$$

②
$$\sqrt{32} = 4\sqrt{2}$$

$$3 \quad \sqrt{20} = 2\sqrt{5}$$

$$\sqrt{500} = 5\sqrt{10}$$

11.
$$\sqrt{2} = x$$
, $\sqrt{5} = y$ 라고 할 때, $\sqrt{10}$ 을 x , y 를 써서 나타내어라.

$$ightharpoonup$$
 정답: $\sqrt{10} = xy$

$$\sqrt{10} = \sqrt{2} \times \sqrt{5} = xy$$

12. 다음 그림과 같이 직사각형 ABCD 에서 DC,
AD 를 각각 한 변으로 하는 정사각형을 그렸
더니 넓이가 18, 50 이 되었다. 이 때, □ABCD
의 넓이를 구하여라.
D

두 정사각형의 한 변의 길이
$$\overline{\mathrm{AD}}=x,\,\overline{\mathrm{DC}}=y$$
 라고 두자. $x^2=50,\,y^2=18$ 이므로 $x=5\sqrt{2},\,y=3\sqrt{2}$

x = 50, y = 18 에므로 x = 5 $\sqrt{2}, y = 3$ $\sqrt{2}$ 따라서 $\Box ABCD$ 의 넓이는 $xy = 5\sqrt{2} \times 3\sqrt{2} = 30$ 이다.

13. 6 의 음의 제곱근을
$$a$$
 , 3 의 양의 제곱근을 b 라 할 때, $\sqrt{a^2 + 2b^2} - \sqrt{2a^2 \times b^2}$ 을 계산하면?

(2) $-4 + 2\sqrt{3}$

(5) $-10 + 2\sqrt{3}$

(3) $-6 + 2\sqrt{3}$

 $\sqrt{(-6)^2 + 2(\sqrt{3})^2} - \sqrt{2(-\sqrt{6})^2 \times (\sqrt{3})^2}$

 $a = -\sqrt{6}, b = \sqrt{3}$ 이므로

 $=\sqrt{6+6}-\sqrt{12\times 3}=2\sqrt{3}-6$

(1) $-2 + 2\sqrt{3}$

(4) $-8 + 2\sqrt{3}$

14. 제곱근표에서 $\sqrt{3} = 1.732 \sqrt{30} = 5.477$ 일 때, $\sqrt{0.03}$ 와 $\sqrt{0.003}$ 의 값으로 바르게 짝지어진 것은?

0.05477, 0.1732

4 0.5477, 0.01732

① 0.001732, 0.5477

⑤ 0.1732, 0.001732

③ 0.1732 , 0.05477

 $\sqrt{0.03} = \sqrt{3 \times 0.01} = \frac{\sqrt{3}}{10} = 0.1732$

$$\sqrt{0.003} = \sqrt{3 \times 0.01} = \frac{10}{10} = 0.1732$$

$$\sqrt{0.003} = \sqrt{30 \times 0.0001} = \frac{\sqrt{30}}{100} = 0.05477$$

15. (x+5)(x-6)+10 을 인수분해하면?

①
$$(x-2)(x+10)$$

②
$$(x+2)(x-10)$$

④ $(x-4)(x+5)$

$$(x+2)(x+10)$$

$$(3)(x+4)(x-5)$$

$$(x+5)(x-6) + 10 = x^2 - x - 30 + 10$$
$$= x^2 - x - 20$$
$$= (x+4)(x-5)$$

16. 다음 두 식에 함께 들어있는 공통인 인수를 구하여라.

$$2x^2 - 4x$$
, $x^2 - 4$

- 답:
- > 정답: x-2

$$2x^2 - 4x = 2x(x-2), \ x^2 - 4 = (x+2)(x-2)$$

따라서 공통인 인수는 $x-2$ 이다.

17.
$$6x^2 + 5x - a = (2x + b)(3x + 7)$$
 가 성립할 때, $a - b$ 의 값은?

$$6x^{2} + 5x - a = (2x + b)(3x + 7)$$

$$= 6x^{2} + 14x + 3bx + 7b$$

$$= 6x^{2} + (14 + 3b)x + 7b$$

$$14 + 3b = 5, 7b = -a, b = -3, a = 21$$

 $\therefore a - b = 21 - (-3) = 24$

18.
$$x$$
 에 대한 이차식 $Ax^2 + 7x + B$ 의 인수가 $x + 3$, $3x - 2$ 일 때, $A + B$ 의 값을 구하면?

$$Ax^{2} + 7x + B = (x + 3)(3x - 2)$$

$$Ax^{2} + 7x + B = 3x^{2} + 7x - 6$$

$$A = 3, B = -6$$

$$A = A + B = -3$$

19.
$$(x+3y)^2-4y^2$$
을 인수분해하면?

①
$$(x-5y)(x-y)$$

$$(3) (x-5y)(x+y)$$

$$(4) (x+3y)(x+2y)$$

$$\bigcirc$$
 $(x+5y)(x+y)$

$$(x+3y)^2 - 4y^2 = (x+3y)^2 - (2y)^2$$
이므로
x+3y=4 2y=8라하면

$$x + 3y = A$$
, $2y = B$ 라 하면
 $A^2 - B^2 = (A + B)(A - B)$

$$= (A + B)(A - B)$$
$$= (x + 3y + 2y)(x + 3y - 2y)$$

$$= (x+5y)(x+y)$$

20. 다음 설명 중 옳은 것은?

- ① 3.9 의 제곱근은 1 개이다
- ② -8 의 제곱근은 √8 이다.
- ③ $\sqrt{6^2}$ 의 제곱근은 $\pm\sqrt{6}$ 이다.
- ④ $\left(-\frac{5}{3}\right)^2$ 의 제곱근은 $-\frac{5}{3}$ 이다.
- ⑤ 제곱근 3 과 3 의 제곱근은 같다.

- ① 3.9 의 제곱근은 $\pm \sqrt{3.9}$ 로 2 개이다.
- ② -8 의 제곱근은 없다.
- $\left(4\left(-\frac{5}{3}\right)^2$ 의 제곱근은 $\pm\frac{5}{3}$
- ⑤ 제곱근 3: √33 의 제곱근: ± √3

21. $\sqrt{\frac{x}{3}}$ 가 정수가 되게 하는 x 의 값 중 두 자리 정수는 모두 몇 개인가?

해설
$$10 \le x \le 99, \ x = 3k^2(k : 정수) 이므로 \ x = 3 \times 2^2, 3 \times 3^2, 3 \times 4^2, 3 \times 5^2$$

$$x = 12, \ 27, \ 48, \ 75$$
∴ 4개

22. 다음 중 항상 성립하는 것은?

③
$$(무리수) \times (무리수) = (무리수)$$

②
$$\sqrt{2} + (-\sqrt{2}) = 0$$
: 유리수
③ $\sqrt{2} \times \sqrt{2} = 2$: 유리수

④
$$\sqrt{2} \div \sqrt{2} = 1$$
 : 유리수

⑤
$$0 \times \sqrt{2} = 0$$
 : 유리수

23.
$$-5\sqrt{7} \times \sqrt{\frac{26}{7}} \times \sqrt{\frac{2}{13}} =$$
 간단히 하여라.

$$-5\sqrt{7} \times \sqrt{\frac{26}{7}} \times \sqrt{\frac{2}{13}} = -5 \times \sqrt{\frac{7 \times 26 \times 2}{7 \times 13}}$$
$$= -5\sqrt{4} = -10$$

24.
$$\sqrt{\frac{13-a}{3}} = 2$$
 일 때, a 의 값을 구하여라.

해설
$$\sqrt{\frac{13-a}{3}} = \frac{\sqrt{13-a} \times \sqrt{3}}{\sqrt{3} \times \sqrt{3}} = 2$$

$$\sqrt{13-a} \times \sqrt{3} = 6$$

$$\sqrt{13-a} = \frac{6}{\sqrt{3}} = \frac{6\sqrt{3}}{3} = 2\sqrt{3} = \sqrt{12}$$

$$\therefore a = 1$$

25.
$$\frac{1}{\sqrt{5}-\sqrt{3}} - \frac{1}{\sqrt{5}+\sqrt{3}}$$
을 간단히 하여라.

해설
$$\frac{1}{\sqrt{5}}$$

$$\frac{1}{\sqrt{5} - \sqrt{3}} - \frac{1}{\sqrt{5} + \sqrt{3}}$$

$$= \frac{(\sqrt{5} + \sqrt{3}) - (\sqrt{5} - \sqrt{3})}{(\sqrt{5} - \sqrt{3})(\sqrt{5} + \sqrt{3})}$$

$$= \frac{2\sqrt{3}}{5-3} = \sqrt{3}$$

26. 다음 중 대소 관계가 옳은 것은?

① $\sqrt{24} > 5$

② $\sqrt{10} < 3$

 $3 - \sqrt{19} > -4$

 $4 \frac{1}{2} > \frac{1}{\sqrt{2}}$

 $\sqrt{3}$ $\sqrt{2} - 2 < \sqrt{3} - 2$

$$a-b>0$$
 일 때, $a>b \to \sqrt{a}>\sqrt{b}$
 $a-b>0 \to a>b$.

$$a - b = 0 \rightarrow a = b.$$

$$\sqrt{24} < 5$$

$$\therefore \sqrt{10} > 3$$

$$1 - \sqrt{19} < -4$$

④ 양변을 제곱하면
$$\frac{1}{4} < \frac{1}{2}$$

 $\therefore \frac{1}{2} < \frac{1}{\sqrt{2}}$

$$(5) (\sqrt{2} - 2) - (\sqrt{3} - 2) = \sqrt{2} - \sqrt{3} < 0$$

$$1.1 \sqrt{2} - 2 < \sqrt{3} - 2$$

- * 양변에 -2 가 공통으로 들어있기 때문에 $\sqrt{2}$ 와 $\sqrt{3}$ 의 대소만
- 을 비교해서 판단해도 된다.

27. 다음은 주어진 제곱근표를 보고 제곱근의 값을 구한 것이다. 옳지 않은 것은?

수	0	1	2	3	4
:	:	:	:	:	:
2.0	1.414	1.418	1.421	1.425	1.428
2.1	1.449	1.453	1.456	1.459	1.463
2.2	1.483	1.487	1.490	1.493	1.497
2.3	1.517	1.520	1.523	1.526	1.530
2.4	1.549	1.552	1.556	1.559	1.562
:	:	::	:	:	:
20	4.472	4.483	4.494	4.506	4.517
21	4.583	4.593	4.604	4.615	4.626
22	4.690	4.701	4.712	4.722	4.733
23	4.796	4.806	4.817	4.827	4.837
24	4.899	4.909	4.919	4.930	4.940

①
$$\sqrt{0.2} = 0.4472$$

②
$$\sqrt{210} = 14.49$$

③
$$\sqrt{220} = 14.83$$

$$\sqrt{0.23} = 47.96$$

$$\sqrt[4]{\sqrt{0.23}} = \frac{\sqrt{23}}{10} = 0.4796$$