1. $(-\sqrt{5})^2$ 의 제곱근은?

① $\sqrt{5}$ ② $-\sqrt{5}$ ③ $\pm \sqrt{5}$ ④ 5 ⑤ ± 5

이글 $(-\sqrt{5})^2 = 5$ 5 의 제곱근: $\pm \sqrt{5}$

2. 다음 수의 제곱근 중 근호가 없는 수로 나타낼 수 있는 것은?

① 2 ② 5 ③ 10 ④ $\sqrt{16}$ ⑤ 20

해설 $1) \pm \sqrt{2}$ $2) \pm \sqrt{5}$ $3) \pm \sqrt{10}$ $4) \pm 2$ $5) \pm 2\sqrt{5}$

3.
$$-\sqrt{25}$$
 ÷ $\sqrt{\left(-7\right)^2}$ ÷ $\sqrt{\left(\frac{3}{7}\right)^2}$ × $\sqrt{\left(-\frac{4}{5}\right)^2}$ 을 간단히 하여라.

ightharpoonup 정답: $-rac{4}{3}$

$$-\sqrt{25} \div \sqrt{(-7)^2} \div \sqrt{\left(\frac{3}{7}\right)^2} \times \sqrt{\left(-\frac{4}{5}\right)^2}$$

$$= -5 \div 7 \div \frac{3}{7} \times \frac{4}{5} = -5 \times \frac{1}{7} \times \frac{7}{3} \times \frac{4}{5} = -\frac{4}{3}$$

4. 1 < x < 3 일 때, $\sqrt{(x-3)^2} + \sqrt{(x+1)^2}$ 을 간단히 하여라.

▶ 답:

▷ 정답: 4

$$\sqrt{(x-3)^2} + \sqrt{(x+1)^2} = -(x-3) + x + 1$$
= 4

5. 다음 중 옳은 것은?

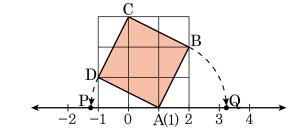

- ① √9 는 무리수이다.
- ② 순환소수는 유리수이다.
- ③ 모든 무한소수는 무리수이다.
- ④ 3.14 는 무리수이다.
- ⑤ 근호를 사용하여 나타낸 수는 모두 무리수이다.

① $\sqrt{9}$ 는 유리수이다.

해설

- ② 순환소수는 유리수이다. ③ 므하스스 존 비스하스스
- ③ 무한소수 중 비순환소수는 무리수이다.
- ④ 3.14 는 유리수이다. ⑤ 근호를 사용하여 나타낸 수 중에 무리수가 아닌 수도 있다.
- 예) $\sqrt{4}=2$
- (41) $\sqrt{4}=2$

6. 다음 중 만의 수에 해당하지 <u>않는</u> 것은?



- ① $\sqrt{5} + 1$ ② $-\frac{\pi}{2}$ ③ $\sqrt{0.9}$ ④ $-\sqrt{2.89}$ ⑤ $0.1234\cdots$

 $4 - \sqrt{2.89} = -\sqrt{\frac{289}{100}} = -\sqrt{\left(\frac{17}{10}\right)^2} = -\frac{17}{10}$

빈칸에 들어갈 용어는 무리수이다. 무리수가 아닌 것을 찾는다.

7. 다음 그림에서 $\square ABCD$ 는 정사각형이다. 점 P, Q 의 좌표를 각각 a, b 라 할 때, a + b 의 값은?

- ① -4
- \bigcirc 2
- $3 2\sqrt{5}$
- $4 1 \sqrt{5}$ $1 + \sqrt{5}$

□ABCD의 넓이는 (큰 정사각형 넓이)-(삼각형 네 개의 넓이의 $\square ABCD$ 의 넓이는 $9-4 imes \left(\frac{1}{2} imes 1 imes 2\right) = 5$

 \therefore $\square ABCD$ 의 한 변의 길이는 $\sqrt{5}$

 $\overline{AD} = \overline{AP} = \sqrt{5}, \ \overline{AB} = \overline{AQ} = \sqrt{5}$

점 P 는 A(1) 보다 $\sqrt{5}$ 만큼 작은 수, 점 Q 는 A(1) 보다 $\sqrt{5}$ 만큼 큰수

 $a = 1 - \sqrt{5}, \ b = 1 + \sqrt{5}$ $\therefore a+b=2$

- 8. 다음 중 수직선 위의 모든 점과 일대일 대응하는 수는?
 - ⑤ 실수 ④ 유리수
- - ① 자연수 ② 정수 ③ 무리수

해설

연속성을 갖는 수는 실수뿐이며 수직선 위의 모든 점과 일대일

대응을 이루는 수는 실수이다.

- 다음에 주어진 두 수의 대소가 옳은 것은? 9.
 - ② $2 \sqrt{7} > \sqrt{3} \sqrt{7}$ ① $-\sqrt{3} - \sqrt{10} < -\sqrt{10} - 3$
 - $3 \sqrt{8} < -3$
- $4 \sqrt{0.1} > \sqrt{0.3}$
- ⑤ $-3\sqrt{2} > -2\sqrt{3}$

- ① $-\sqrt{3} \sqrt{10} (-\sqrt{10} 3)$ $=-\sqrt{3}+3=\sqrt{9}-\sqrt{3}>0$
- $\therefore -\sqrt{3} \sqrt{10} > -\sqrt{10} 3$
- ② $2 \sqrt{7} (\sqrt{3} \sqrt{7}) = 2 \sqrt{3} > 0$
- $\therefore -\sqrt{8} > -3$ (4) $\sqrt{0.1} < \sqrt{0.3}$

- ⑤ $-3\sqrt{2} = -\sqrt{18}, -2\sqrt{3} = -\sqrt{12}$ ∴ $-3\sqrt{2} < -2\sqrt{3}$

10. 다음 중 옳은 것은?

- ① $\sqrt{81} = \pm 9$
- ② 음수의 제곱근은 두 개이다.
- ③ 제곱근 0.49 는 ±0.7 이다.
- ④ 6.4 의 제곱근은 0.8 이다.
- ③0의 제곱근은 한 개이다.

① $\sqrt{81} = 9$

② 음수의 제곱근은 없다.

해설

- ③ 제곱근 $0.49 = \sqrt{0.49} = 0.7$
- ④ 6.4의 제곱근 = ± √6.4

11. 다음 보기 중 옳은 것은?

보기

- ① a > 0 일 때, a 의 제곱근을 x 라고 하면 $x^2 = a$ 이다. © 제곱근 9 와 9 의 제곱근은 서로 같다.
- - ② √20 은 √5 의 4배이다.
 ③ -7 은 49 의 제곱근이다.

▶ 답:

► 답:

▶ 답:

▶ 답:

▷ 정답: ⑤

 ▷ 정답:
 ©

 ▷ 정답:
 @

▷ 정답: ॥

해설
 ⑥ 제곱근 9는 √9 = 3 이고, 9 의 제곱근은 ±3 이다.

(2) $\sqrt{20} = 2\sqrt{5}$ 이므로 $\sqrt{5}$ 의 2 배이다.

- 12. 다음 중 그 값이 나머지 넷과 다른 하나는?

 - ① $-\sqrt{4^2}$ ② $-(-\sqrt{4})^2$ ③ $-\sqrt{(-4)^2}$ ④ $\sqrt{\sqrt{(-4)^4}}$ ⑤ $-\sqrt{\frac{1}{4}(4)^3}$

해설 $\sqrt{\sqrt{(-4)^4}} = 4$

13. -3 < a < 0 일 때, $\sqrt{(-a)^2} - \sqrt{(a+3)^2}$ 을 간단히 하면?

(1) -2a - 3 (2) -2a + 3(4) 2a - 3 (5) 2a + 3

① -2a-3 ② -2a+3 ③ -3

해설

-3 < a < 0 일 때, a < 0 이고 a + 3 > 0 이다. $\sqrt{(-a)^2} - \sqrt{(a+3)^2} = |-a| - |a+3|$

= -a - (a+3) = -a - a - 3 = -2a - 3

14. $9 < \sqrt{2x+30} < 12$ 일 때, $\sqrt{2x+30}$ 을 정수가 되게 하는 자연수 x 의 값을 구하여라.

답:

> 정답: *x* = 35

 $9 < \sqrt{2x + 30} < 12$

 $2x + 30 = 10^2 = 100, x = 35$ $2x + 30 = 11^2 = 121, x = 45.5$ 15. 다음 수들을 소수로 나타낼 때 순환하지 않는 무한소수가 되는 것은?

- ① $0.\dot{6} + \sqrt{3}$ ② $\frac{3}{\sqrt{4}}$ ③ $\sqrt{0.25}$ ④ $\frac{1}{3}$ ⑤ $\sqrt{\frac{9}{4}}$

16. 다음 중 각 식을 만족하는 x 의 값이 무리수인 것을 $\underline{\mathsf{PF}}$ 고르면?

(a) $x^2 = \frac{8}{49}$ (b) $x^2 = 7$

(S)(2),(D) $\textcircled{1} \ \textcircled{9,0} \qquad \textcircled{2} \ \textcircled{0,0} \qquad \textcircled{3} \ \textcircled{6,0} \qquad \textcircled{4} \ \textcircled{6,0}$

17. 다음 중 무리수는 모두 몇 개인가?

 $\sqrt{121}$, $\frac{\sqrt{12}}{2}$, $-\frac{\pi}{2}$, $\sqrt{0.04}$, $\sqrt{3}-2$

① 1 <u>개</u> ② 2 <u>개</u> ③ 3 <u>개</u> ④ 4 <u>개</u> ⑤ 5 <u>개</u>

 $\sqrt{121} = 11$, $\sqrt{0.04} = 0.2$: 유리수 $\frac{\sqrt{12}}{2}$, $-\frac{\pi}{2}$, $\sqrt{3} - 2$: 무리수

18. 다음 중 옳은 것은?

- ① 모든 순환하지 않는 무한소수는 무리수이다. ② 모든 자연수의 제곱근은 무리수이다.
- ③ 1 의 제곱근은 1 자신뿐이다.
- ④ 모든 \dot{r} \dot{r} \dot{r} 에 대하여 $\sqrt{a^2} = a$ 이다.
- ⑤ $1+\sqrt{2}$ 는 무리수가 아니다.

② $\sqrt{1} = 1$

③ 1 의 제곱근은 ±1 이다.

해설

- ④ a > 0 이면 $\sqrt{a^2} = a$ 이다.
- ⑤ $\sqrt{2}$ 가 순환하지 않는 무한소수이므로 $1+\sqrt{2}$ 도 순환하지
- 않는 무한소수이므로 무리수이다.

19. 다음 중 항상 성립하는 것은?

- ① (무리수) + (유리수) = (무리수) ② (무리수) + (무리수) = (무리수)
- ③ (무리수) × (무리수) = (무리수)
- ④ (무리수) ÷ (무리수) = (무리수)
- ⑤ (유리수) x (무리수) = (무리수)

② $\sqrt{2} + (-\sqrt{2}) = 0$: 유리수

해설

- ③ $\sqrt{2} \times \sqrt{2} = 2$: 유리수 ④ $\sqrt{2} \div \sqrt{2} = 1$: 유리수
- (4) $\sqrt{2} \div \sqrt{2} = 1$: 유리수 (5) $0 \times \sqrt{2} = 0$: 유리수

20. 다음 보기 중 옳은 것을 모두 골라라.

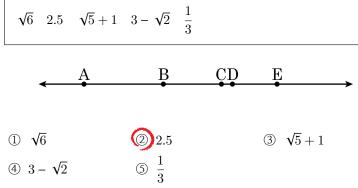
 $\frac{1}{\sqrt{5}}$ 는 자연수가 아니다. $3\sqrt{4}$ 는 무리수이다. $\sqrt{0.01}$ 는 정수가 아닌 유리수이다. $\sqrt{9} \times \frac{\sqrt{4}}{4}$ 는 자연수이다.

▶ 답:

▶ 답:

▷ 정답: ⑤

▷ 정답: ⑤


 $\bigcirc \frac{1}{\sqrt{5}}$ 는 무리수이다.

© $\sqrt{0.01} = 0.1$ 이므로 정수가 아닌 유리수이다.

 $\bigcirc 3\sqrt{4}$ 는 6이므로 자연수이므로 무리수가 아니다.

(② $\sqrt{9} \times \frac{\sqrt{4}}{4} = 3 \times \frac{2}{4} = \frac{3}{2}$ 이므로 자연수가 아니다.

21. 다음의 수를 수직선 위에 나타냈더니 그림과 같았다. 점 D 에 대응하는

- 해설 $\frac{1}{3} < 3 - \sqrt{2} < \sqrt{6} < 2.5 < \sqrt{5} + 1$ 이다.

- **22.** 다음 설명 중 옳은 것을 모두 고르면?(단, a > 0)
 - 모든 수의 제곱근은 항상 2 개이다.
 a² 의 제곱근은 a 이다.

 - ③ \sqrt{a} 는 제곱근 a 와 같다.
 - ④ $\sqrt{a^2}$ 의 제곱근은 \sqrt{a} 이다.
 - ③모든 자연수의 제곱근은 항상 2 개이다.

① 0 의 제곱근은 한 개이고 음수의 제곱근은 없다.

- ② a² 의 제곱근은 ±a
- ④ $\sqrt{a^2}$ 의 제곱근은 $\pm \sqrt{a}$

23. 두 실수 a, b 에 대하여 a-b<0, ab<0 일 때, $\sqrt{a^2}+\sqrt{b^2}-\sqrt{(-a)^2}+\sqrt{(-b)^2}$ 을 간단히 한 것은?

① 0 ② 2a ③ a-b ④ 2b ⑤ a+b

해설

ab < 0 이면 a와 b의 부호가 다르다. a - b < 0 이면 a < b 이므로 a < 0, b > 0 이다. a < 0 이므로 $\sqrt{a^2} = -a$, b > 0 이므로 $\sqrt{b^2} = b$ a < 0 이므로 $\sqrt{(-a)^2} = \sqrt{a^2} = -a$ b > 0 이므로 $\sqrt{(-b)^2} = \sqrt{b^2} = b$ 따라서 $\sqrt{a^2} + \sqrt{b^2} - \sqrt{(-a)^2} + \sqrt{(-b)^2}$ = -a + b - (-a) + b= 2b **24.** 자연수 a, b 에 대하여 $\sqrt{\frac{216a}{7}} = b$ 일 때, a + b 의 최솟값은?

① 33 ② 36 ③ 42 ④ 44

$$\sqrt{\frac{216a}{7}} = \sqrt{\frac{2^3 \times 3^3 \times a}{7}} = b$$

$$a = 7 \times 2 \times 3 = 42 \ \text{일 때 최소}$$

$$b = \sqrt{\frac{2^3 \times 3^3 \times 7 \times 2 \times 3}{7}} = 2^2 \times 3^2 = 36$$

$$\therefore a + b = 42 + 36 = 78$$

$$b = \sqrt{\frac{2^3 \times 3^3 \times 7 \times 2 \times 3}{7}} =$$

25. $\sqrt{180-18a}$ 가 자연수가 되도록 하는 자연수 a 중에서 가장 큰 값을 M, 가장 작은 값을 m 이라고 할 때, Mm 의 값을 구하여라.

답:

▷ 정답: 16

- 해설 √180 -

 $\sqrt{180-18a}=\sqrt{18(10-a)}=3\sqrt{2}\times\sqrt{10-a}$ $\sqrt{10-a}=\sqrt{2}$ 일 때, a 가 가장 큰 값을 가지므로 a=8 $\sqrt{10-a}=\sqrt{8}$ 일 때, a 가 가장 작은 값을 가지므로

a = 2M = 8, m = 2이다.

따라서 *Mm* = 16 이다.

26. 다음 수 중 가장 작은 수를 x, 가장 큰 수를 y 라고 할 때 $x^2 + y^2$ 의 값을 구하여라.

 $\sqrt{5}$, $-\sqrt{2}$, $\frac{\sqrt{7}}{2}$, $\sqrt{6}$, $-\sqrt{\frac{3}{4}}$

① 4 ② 5 ③ 6 ④ 7

(5)8

가장 큰 수는 $\sqrt{6}$

가장 작은 수는 $-\sqrt{2}$ $\therefore x^2 + y^2 = (-\sqrt{2})^2 + (\sqrt{6})^2 = 2 + 6 = 8$

- ① $\sqrt{a} + b$ (4) *ab*
- $3 a^2 b^2$

① $a=2,b=-\sqrt{2}$ 일 때, $\sqrt{2}+(-\sqrt{2})=0$ 이므로 유리수이다. ③ $b=\sqrt{2}$ 일 때, $b^2=2$ 이므로 a^2-b^2 는 유리수이다. ④ a=0 일 때, ab=0 이므로 유리수이다.

⑤ $a=2, b=\sqrt{8}$ 일 때, $\frac{\sqrt{8}}{\sqrt{2}}=2$ 이므로 유리수이다.

28. a - b > 0, ab < 0 일 때, 다음 중 옳은 것을 모두 골라라.

▶ 답:

답:

▶ 답:

▷ 정답: □ ▷ 정답: ②

▷ 정답: □

해설

b < 0 < a 이 므로 ① : $\sqrt{(b-a)^2} = a - b$ ② : $\sqrt{(ab)^2} = -ab = |ab|$

© : $-\sqrt{b^2} = b$, $\sqrt{a^2} = a$ b - a < 0 이므로 $-\sqrt{b^2} < \sqrt{a^2} + 1$

 $-\sqrt{b^2} = -(-b) = b$ $\sqrt{(-a)^2} + 1 > 1 - \sqrt{b^2}$

29. $2 < \sqrt{|5-2x|} < 4$ 를 만족하는 정수 x 의 개수를 구하여라.

개 ▶ 답:

▷ 정답: 12<u>개</u>

 $2 < \sqrt{|5-2x|} < 4$ 에서 각 변을 제곱하면 4 < |5-2x| < 16

(1) $5-2x \ge 0$, 즉 $x \le \frac{5}{2}$ 일 때,

4 < 5 - 2x < 16 ∴
$$-\frac{11}{2}$$
 < x < $\frac{1}{2}$
이를 만족하는 정수 x 는 -5, -4, -3, -2, -1, 0 이다.

(2) 5 – 2x < 0 , 즉 $x > \frac{5}{2}$ 일 때,

 $4 < 2x - 5 < 16 \therefore \frac{9}{2} < x < \frac{21}{2}$ 이를 만족하는 정수 x 는 5, 6, 7, 8, 9, 10 이다. 따라서, (1), (2) 에 의하여 정수 x 의 개수는 12 개이다.

30. 다음 중 $\sqrt{3}$ 와 $\sqrt{11}$ 사이에 있는 무리수는?

① $\sqrt{3} - 1$ ② $2\sqrt{3}$ ③ $\sqrt{11} - 3$ ④ $\sqrt{3} + 3$

$$\sqrt{3} + 3 \qquad \qquad \sqrt{3} \frac{\sqrt{3} + \sqrt{3}}{2}$$

해설 $2\sqrt{3} = \sqrt{12}, \sqrt{3} < \frac{\sqrt{3} + \sqrt{11}}{2} < \sqrt{11}$