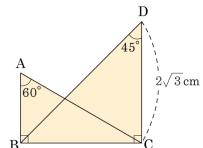


다른 직각삼각형이 겹쳐져 있 다. 이 때, \overline{AB} 의 길이를 구하 여라. ① $\sqrt{3}$ cm 22 cm

다음 그림과 같이 두 개의 서로

- $3 2\sqrt{3} \text{ cm}$
- ④ 3 cm
- $\bigcirc 3\sqrt{3}\,\mathrm{cm}$

2.

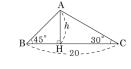


△BCD 는 직각이등변삼각형이므로

 $\overline{BC} = \overline{CD} = 2\sqrt{3}$ (cm) $\triangle ABC$ 는 직각삼각형이므로 $\angle ACB = 30^{\circ}$

 $\therefore \overline{AB} = 2\sqrt{3}\tan 30^{\circ} = 2\sqrt{3} \times \frac{1}{\sqrt{3}} = 2 \text{ (cm)}$

3. 다음 그림과 같은 \triangle ABC 에서 높이 h 를 구하면?



- ① $10(\sqrt{2}-1)$ ② $10(\sqrt{3}-1)$ ③ $10(\sqrt{3}-\sqrt{2})$ ④ $10(\sqrt{2}-2)$
- 해설

해설
$$h = \frac{20}{\tan(90^{\circ} - 45^{\circ}) + \tan(90^{\circ} - 30^{\circ})}$$

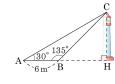
$$= \frac{20}{\tan 45^{\circ} + \tan 60^{\circ}}$$

$$= \frac{20}{1 + \sqrt{3}}$$

$$= \frac{20(\sqrt{3} - 1)}{3 - 1}$$

$$= 10(\sqrt[3]{3} - 1)$$

다음 그림은 등대의 높이를 알아보기 위해 측정한 결과이다. 등대의 4. 높이는?



- ① $(3 \sqrt{3})$ m $(4\sqrt{3}+1)$ m
- ② $(3\sqrt{3}-3)$ m ③ $(4\sqrt{3}-1)$ m

해설

 $(3\sqrt{3}+3)$ m

등대의 높이를 *h* 라 하면

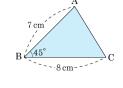
 $\angle \text{CBH} = 45^{\circ}$ 이므로 $\overline{\text{BH}} = h$ ∠CAH = 30° 이므로

 $6+h: h = \sqrt{3}: 1, \ \sqrt{3}h = 6+h$

 $(\sqrt{3}-1)h=6$

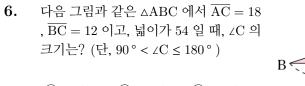
 $\therefore h = \frac{6}{\sqrt{3} - 1} = 3(\sqrt{3} + 1) = 3\sqrt{3} + 3(m)$

5. 다음 그림의 △ABC의 넓이는?



- ① $7\sqrt{2} \text{ cm}^2$ ② $14\sqrt{2} \text{ cm}^2$ ③ $21\sqrt{2} \text{ cm}^2$ ④ $28\sqrt{2} \text{ cm}^2$ ⑤ $56\sqrt{2} \text{ cm}^2$

 $\frac{1}{2} \times 7 \times 8 \times \sin 45^{\circ} = 28 \times \frac{\sqrt{2}}{2} = 14 \sqrt{2} (\text{cm}^2)$



① 95° ② 100° ③ 120° ⑤150°

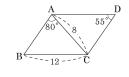
④ 135°

두 변의 길이가 a, b 이고 그 끼인 각 x 가 둔각이면, 삼각형의 넓이 $S = \frac{1}{2}ab\sin(180° - x)$

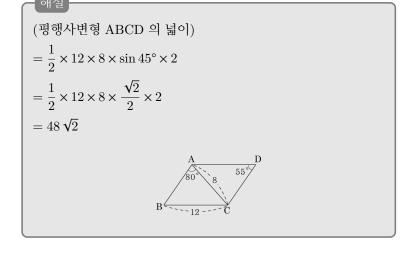
 $\frac{1}{2}\times12\times18\times\sin(180\,^{\circ}-\angle\mathrm{C})=54~,$ $\sin(180\,^{\circ} - \angle C) = \frac{1}{2} = \sin 30\,^{\circ}$

따라서 ∠C = 150°이다.

7. 다음 그림과 같은 평행사변형의 넓이를 구하여라.



답:
 > 정답: 48√2



8. 다음 그림과 같이 두 대각선이 이루는 각의 크기가 45° 인 등변사다리 꼴 ABCD 의 넓이가 $18\sqrt{2} \text{cm}^2$ 일 때, $\overline{\text{AC}}$ 의 길이를 구하여라.

 $\underline{\mathrm{cm}}$

답:
 ▷ 정답: 6√2 cm

대각선 $\overline{AC} = \overline{BD} = x$ 라면 $x \times x \times \frac{1}{2} \times \sin 45^{\circ} = 18\sqrt{2}$

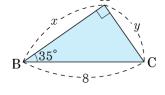
$$x^{2} \times \frac{1}{2} \times \frac{\sqrt{2}}{2} = 18\sqrt{2}$$

$$x^{2} = 72 \qquad \therefore \quad x = 6\sqrt{2} \text{ (cm)}$$

다음 그림에서 x - y 의 값을 구하면? 9. (단, $\sin 55^\circ = 0.82$, $\cos 55^\circ = 0.57$)

> 1)2 **4** 8

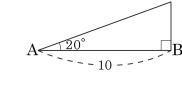
- ② 4 ⑤ 10
- 3 6



$$\sin 55^\circ = \frac{x}{8} = 0.82$$
 이므로 $x = 6.56$
 $\cos 55^\circ = \frac{y}{8} = 0.57$ 이므로 $y = 4.56$
따라서, $x - y = 6.56 - 4.56 = 2$ 이다.

$$\cos 55^\circ = \frac{7}{8} = 0.57$$
 이므로 $y = 4.5$

10. 다음 그림에서 AB = 10, ∠A = 20° 일 때, 삼각형의 둘레를 구하여라.
 (단, sin 20° = 0.34, cos 20° = 0.94, tan 20° = 0.36 으로 계산하고, 계산 결과는 소숫점 둘째자리 까지 나타낸다.)

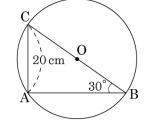


▷ 정답: 24.24

▶ 답:

 $\cos 20^\circ = \frac{\overline{AB}}{\overline{AC}} = \frac{10}{\overline{AC}}, \ \overline{AC} = \frac{10}{\cos 20^\circ} = \frac{10}{0.94} = 10.64$ $\tan 20^\circ = \frac{\overline{BC}}{\overline{AB}} = \frac{\overline{BC}}{10}, \ \overline{BC} = 10 \tan 20^\circ = 10 \times 0.36 = 3.6$ 따라서 삼각형의 둘레는 10 + 10.64 + 3.6 = 24.24 이다.

11. 다음 그림에서 $\overline{AC} = 20 {\rm cm}$, $\angle B = 30^{\circ}$ 일 때, 원 O 의 반지름의 길이를 구하여라.



 ▶ 정답:
 20 cm

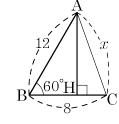
 $\underline{\mathrm{cm}}$

▶ 답:

 $\sin 30^{\circ} = \frac{20}{\overline{BC}}, \overline{BC} = \frac{20}{\sin 30^{\circ}}$ $\overline{BC} = 20 \div \frac{1}{2} = 20 \times 2 = 40(\text{cm})$

∴ (반지름) = 20(cm)

12. 다음 그림에서 x 의 길이를 구하면?



 $4\sqrt{7}$

⑤ $4\sqrt{11}$

$$\overline{AH} = 12\sin 60^\circ = 12 \times \frac{\sqrt{3}}{2} = 6\sqrt{3}$$

$$\overline{BH} = 12\cos 60^\circ = 12 \times \frac{1}{2} = 6$$

해설

① $4\sqrt{2}$ ② $4\sqrt{3}$ ③ $4\sqrt{5}$

$$\overline{\text{CH}} = 8 - 6 = 2$$

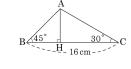
$$x = \sqrt{(6\sqrt{3})^2 + 2^2} = \sqrt{108 + 4} = \sqrt{112} = 4\sqrt{7}$$

13. 다음 그림과 같은 $\triangle ABC$ 에서 높이 $\overline{\mathrm{AH}}$ 의 길이를 구하면?

① $\sqrt{3}$ ② $2\sqrt{3}$ ③ $3\sqrt{3}$ ④ 2 ⑤ 3

 $\triangle ABC$ 에서 \overline{AH} 를 구하기 위해서 $\triangle ABH$ 에서 $\sin 60\,^\circ = \dfrac{\overline{AH}}{\overline{AB}} =$ $\frac{\overline{AH}}{4} = \frac{\sqrt{3}}{2}, \ \overline{AH} = 2\sqrt{3}$ 이다.

14. 다음 그림에서 $\angle B=45^\circ$ 이고 $\angle C=30^\circ$ 일 때, \overline{AH} 의 길이를 구하면?



- ① $8(\sqrt{2}-1)$ cm ② $8(\sqrt{3}-1)$ cm ③ $8(2-\sqrt{3})$ cm ④ $8(2-\sqrt{2})$ cm
- \bigcirc 8 $\left(3 \sqrt{3}\right)$ cm

해설

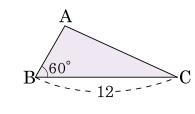
$$\overline{AH} = \frac{16}{\tan (90^{\circ} - 30^{\circ}) + \tan (90^{\circ} - 45^{\circ})}$$

$$= \frac{16}{\tan 60^{\circ} + \tan 45^{\circ}}$$

$$= \frac{16}{\sqrt{3} + 1}$$

$$= 8 (\sqrt{3} - 1) \text{ (cm)}$$

15. 다음 그림과 같은 삼각형 ABC 의 넓이가 $30\sqrt{3}$ 일 때, \overline{AB} 의 길이는?



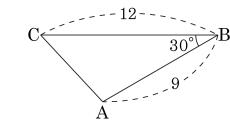
① 14 ② 13 ③ 12 ④ 11 ⑤ 10

해설
$$\triangle ABC = \frac{1}{2} \times \overline{AB} \times 12 \times \sin 60^{\circ} = 30 \sqrt{3}$$

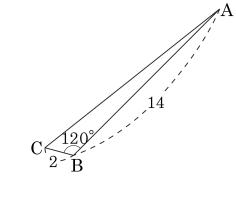
$$6 \times \overline{AB} \times \frac{\sqrt{3}}{2} = 30 \sqrt{3}$$
 따라서 $\overline{AB} = 10$ 이다.

따라서
$$\overline{AB} = 10$$
 이다

16. 다음 그림과 같은 두 삼각형 ABC 의 넓이를 바르게 연결한 것은?



(2)

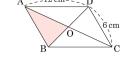


- $\textcircled{4}(1)27, (2)7\sqrt{3}$ $\textcircled{5}(1)28, (2)7\sqrt{3}$
- ① $(1)25, (2)6\sqrt{3}$ ② $(1)25, (2)7\sqrt{3}$ ③ $(1)26, (2)6\sqrt{3}$

(2)
$$\frac{1}{2} \times 14 \times 2 \times \sin(180)$$

- (1) $\frac{1}{2} \times 9 \times 12 \times \sin 30^{\circ}$ $= \frac{1}{2} \times 9 \times 12 \times \frac{1}{2} = 27$ (2) $\frac{1}{2} \times 14 \times 2 \times \sin(180^{\circ} 120^{\circ})$ $= \frac{1}{2} \times 14 \times 2 \times \sin 60^{\circ}$ $= \frac{1}{2} \times 14 \times 2 \times \frac{\sqrt{3}}{2} = 7\sqrt{3}$

17. 다음 그림과 같은 평행사변형 ABCD 에서 대각선 \overline{AC} , \overline{BD} 의 교점을 O 라고 하자. $\angle BCD = 60^\circ$, $\overline{AD} = 12 \mathrm{cm}$, $\overline{CD} = 6 \mathrm{cm}$ 일 때, $\triangle ABO$ 의 넓이를 구하면?



- $\bigcirc 9 \, \mathrm{cm}^2$
- $2 10 \,\mathrm{cm}^2$
- $3 9\sqrt{2} \,\mathrm{cm}^2$

해설

 $9\sqrt{3} \text{ cm}^2$ $5 10\sqrt{3} \text{ cm}^2$

(□ABCD의 넓이) = $12 \times 6 \times \sin 60^{\circ}$ = $12 \times 6 \times \frac{\sqrt{3}}{2}$ = $36\sqrt{3}$ (cm²) $\therefore \triangle ABO = 36\sqrt{3} \times \frac{1}{4} = 9\sqrt{3}$ (cm²)

18. 한 모서리의 길이가 $12~{
m cm}$ 인 정사면체의 부피 를 구하여라.

ightharpoonup 정답: $144\sqrt{2}$ cm^3

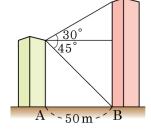
답:

 $\overline{\rm AD} = 12 \times \cos 30^\circ = 6\sqrt{3} (\,{\rm cm})$ 이코, $\overline{\rm AH} = \frac{2}{3} \times \overline{\rm AD} = 4\sqrt{3} (\,{\rm cm})$ $\overline{OH} = \sqrt{12^2 - (4\sqrt{3})^2} = \sqrt{144 - 48} = 4\sqrt{6} \text{ (cm)}$

 $\underline{\mathrm{cm}^3}$

따라서 부피는 $\frac{1}{3} \times \frac{\sqrt{3}}{4} \times 12^2 \times 4\sqrt{6} = 144\sqrt{2} \text{(cm}^3)$ 이다.

19. 다음 그림과 같이 간격이 50m 인 두 건물
 A 건물 옥상에서 B 건물을 올려다 본 각
 도는 30°이고, 내려다 본 각도는 45°일
 때, B 건물의 높이는?

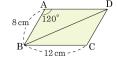


① $50 (\sin 30^{\circ} + \sin 45^{\circ}) \text{ m}$ ③ $50 (\cos 30^{\circ} + \cos 45^{\circ}) \text{ m}$ \bigcirc 50 (tan 30° + tan 45°) m \bigcirc 50 (sin 30° + tan 45°) m

 $50 (\cos 30^{\circ} + \tan 45^{\circ}) \text{ m}$

해설

 $\overline{DC} = 50 \tan 30^{\circ}$, $\overline{BC} = 50 \tan 45^{\circ}$ 따라서 $\overline{DB} = \overline{DC} + \overline{CB}$ $= 50 \tan 30^{\circ} + 50 \tan 45^{\circ}$ $= 50(\tan 30^{\circ} + \tan 45^{\circ} \text{m})$ 이다. ${f 20}$. 다음 그림과 같은 평행사변형에서 $\angle {
m A}=120^{\circ}$ 일 때, 대각선 $\overline{
m BD}$ 의 길이의 제곱의 값을 구하면?



① 108 ② 144

③ 196

4 304

⑤ 340

D 에서 \overline{AB} 의 연장선에 내린 수선의 발을 H 라 하면

△ADH 에서

 $\overline{\rm AH} = \overline{\rm AD} \; \cos 60^{\circ} = 6$

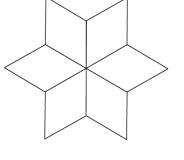
 $\overline{\rm DH} = \overline{\rm AD} \ \sin 60^\circ = 6 \, \sqrt{3}$

△BDH 에서 $\overline{BD} = \sqrt{\overline{BH^2 + \overline{DH^2}}}$

 $= \sqrt{(6+8)^2 + (6\sqrt{3})^2}$

 $=\sqrt{304}$ (cm)

21. 다음 그림은 한 변의 길이가 3 cm 인 여섯 개의 합동인 마름모로 이루어진 별모양이다. 별의 넓이가 $a \sqrt{b} \text{ cm}^2$ 일 때, a+b의 값을 구하여라.(단, b는 최소의 자연수)



▶ 답:

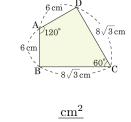
▷ 정답: 30

 $360 \, ^{\circ} \div 6 = 60 \, ^{\circ}$ 이므로 마름모 한 개의 넓이는

 $3 \times 3 \times \sin 60$ ° = $\frac{9}{2}\sqrt{3}(\text{cm}^2)$ 이다. 따라서, 별의 넓이는 $\frac{9}{2}\sqrt{3} \times 6 = 27\sqrt{3}(\text{cm}^2)$

∴ a+b=27+3=30 이다.

22. 다음 그림과 같은 사각형 ABCD 의 넓이를 구하여라.



정답: 57√3 cm²

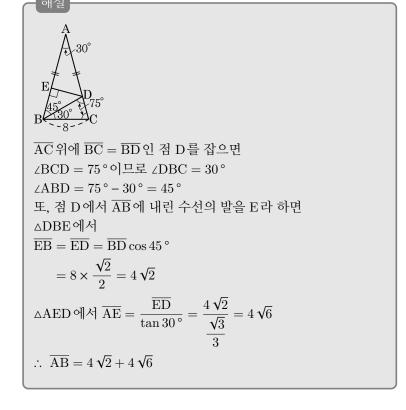
답:

점 B 와 점 D 를 연결하면 $(\Box ABCD \ 의 넓 \ O) = \triangle ABD + \triangle BCD$ $= \frac{1}{2} \times 6 \times 6 \times \sin 120^{\circ} + \frac{1}{2} \times 8 \sqrt{3} \times 8 \sqrt{3} \times \sin 60^{\circ}$ $= \frac{1}{2} \times 6 \times 6 \times \frac{\sqrt{3}}{2} + \frac{1}{2} \times 8 \sqrt{3} \times 8 \sqrt{3} \times \frac{\sqrt{3}}{2}$ $= 57 \sqrt{3} (cm^{2})$

23. $\angle B=\angle C$ 인 이등변삼각형 ABC 에서 $\angle A=30^\circ$, $\overline{BC}=8$ 일 때, 변 AB 의 길이를 구하여라.

▶ 답:

ightharpoonup 정답: $4\sqrt{2} + 4\sqrt{6}$



 24. 다음 그림은 A 지점에서 강 건너에 있는 D 지점까지의 거리를 구하기 위한 것이다. AB = 100 m, AC = 40 m, ∠BAD = ∠CAD = 60°일 때, AD 의 길이를 구하여라.

 $\underline{\mathbf{m}}$

답:
 ▷ 정답: ²⁰⁰/₇ m

7

 $\overline{AD} = x$ 라 하면 $\triangle ABC = \triangle ABD + \triangle ADC$ 이므로 $\frac{1}{2} \times 100 \times 40 \times \sin 120$ °

 $= \frac{1}{2} \times 100 \times x \times \frac{\sqrt{3}}{2} + \frac{1}{2} \times 40 \times x \times \frac{\sqrt{3}}{2}$ 14x = 400 $\therefore x = \frac{200}{7} \text{ (m)}$

7

25. 다음 그림의 \triangle ABC 에서 \angle A : \angle B : \angle C = 3 : 4 : 5 이고, 외접원 O 의 반지름의 길이

가 4cm 일 때, △ABC 의 넓이를 구하여라. (단, 단위는 생략한다.)

 $4\,\mathrm{cm}$

답:

ightharpoonup 정답: $12 + 4\sqrt{3}$

 $\angle A: \angle B: \angle C=3:4:5$ 이므로 $5.0 pt \overrightarrow{AB}: 5.0 pt \overrightarrow{AB}: 5.0 pt \overrightarrow{CA}=5:3:4$ 이다.

 $\angle A = \frac{3}{12} \times 180^{\circ} = 45^{\circ}$ $\angle B = \frac{4}{12} \times 180^{\circ} = 60^{\circ}$

 $\angle C = \frac{5}{12} \times 180^{\circ} = 75^{\circ}$ $\Rightarrow \angle BOC = 90^{\circ}, \angle COA = 120^{\circ}, \angle AOB = 150^{\circ}$

 $\triangle AOB = \frac{1}{2} \times \overline{OA} \times \overline{BH} \; (\; \overline{BH} 는 삼각형의 높이)$

 $\overline{\mathrm{BH}} = 10\sin 30$ ° 이므로 $\triangle AOB = \frac{1}{2} \times 4 \times 4 \times \frac{1}{2} = 4$

같은 방법으로 $\triangle AOC = \frac{1}{2} \times 4 \times 4 \times \sin 60^{\circ} = 4\sqrt{3}, \ \triangle BOC = 1$

 $\frac{1}{2} \times 4 \times 4 \times \sin 90^{\circ} = 8$

따라서 $\triangle ABC = \triangle AOB + \triangle AOC + \triangle BOC$

 $=4+4\sqrt{3}+8=12+4\sqrt{3}$ 이다.