

$$\triangle AB_1C_1 \text{ 에서 }\overline{AC_1} = \sqrt{8^2 + 6^2} = 10$$

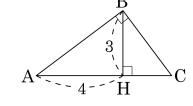
$$\triangle AB_1C_1 \text{ \triangle} \triangle ABC \text{ $(\because$ AA 젊 $\stackrel{\triangle}{\Box})$}$

$$\frac{\overline{BC}}{\overline{AC}} = \frac{\overline{B_1C_1}}{\overline{AC_1}} = \frac{6}{10} = \frac{3}{5}$$

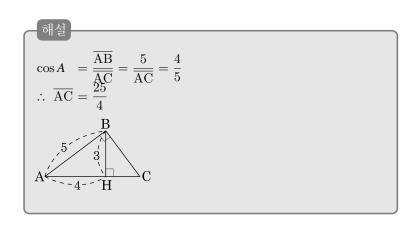
$$\frac{\overline{AB}}{\overline{AC}} = \frac{\overline{AB_1}}{\overline{AC_1}} = \frac{8}{10} = \frac{4}{5}$$

$$\therefore \left(\frac{3}{5} + \frac{4}{5}\right) = \frac{7}{5}$$$$

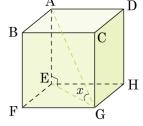
 $\tan A=1$ 일 때, $(2+\sin A)(2-\cos A)$ 의 값은? (단, $0^{\circ} \le A \le 90^{\circ})$ **2**.


 $\bigcirc \frac{7}{2}$ ② $\frac{5}{2}$ ③ $\frac{3}{2}$ ④ $\frac{1}{2}$ ⑤ 0

 $\tan 45^{\circ} = 1$ 이므로 $\angle A = 45^{\circ}$ $(2 + \sin 45^{\circ})(2 - \cos 45^{\circ})$

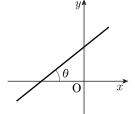

$$=\left(2+\frac{\sqrt{2}}{2}\right)\left(2-\frac{\sqrt{2}}{2}\right)$$

$$= \left(2 + \frac{\sqrt{2}}{2}\right) \left(2 - \frac{\sqrt{2}}{2}\right) = 4 - \frac{1}{2} = \frac{7}{2}$$


3. 다음 그림에서 $\cos A=\frac{4}{5}$ 이고, $\overline{\rm BH}=3$, $\overline{\rm AH}=4$ 일 때 , $\overline{\rm AC}$ 의 길이를 구하여라.

답:
 ▷ 정답: ²⁵/₄

다음 그림과 같은 한 변의 길이가 1 인 정 4. 육면체에서 $\angle AGE$ 가 x 일 때, $\sin x + \cos x$ 의 값이 $\frac{\sqrt{a} + \sqrt{b}}{c}$ 이다. a + b + c 의 값을 구하시오.(단, a, b, c는 유리수)


답: ▷ 정답: 12

 $\overline{AG} = \sqrt{3}$ $\overline{EG} = \sqrt{2}$ $\overline{AE} = 1 \ \bigcirc \Box \Box \Box$

 $\sin x + \cos x = \frac{1}{\sqrt{3}} + \frac{\sqrt{2}}{\sqrt{3}} = \frac{\sqrt{3} + \sqrt{6}}{3}$

따라서 a+b+c=12 이다.

5. 다음 그림에서 직선 4x - 5y + 20 = 0과 x축의 양의 부분이 이루는 각을 θ 라고 할 때, tan *θ*의 값은?

- ① $\frac{1}{2}$ ② $\frac{4}{5}$ ③ $\frac{\sqrt{3}}{3}$ ④ $\sqrt{3}$ ⑤ $\frac{\sqrt{3}}{2}$

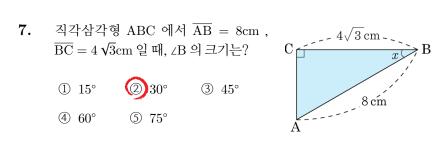
$$v = \frac{4}{x + 4}$$

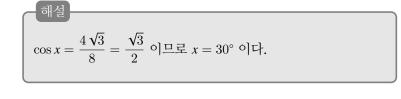
$$4x - 5y + 20 = 0$$
$$y = \frac{4}{5}x + 4$$
에서
$$7)울7(\frac{4}{5}) = \tan \theta$$

$$7\frac{5}{5} = \tan \theta$$

- 다음 중 옳지 <u>않은</u> 것은? (단, A, B 는 예각이다.) **6.**
 - $2 1 - 2\sin^2 A = 2\cos^2 A - 1$

 - $(\sin A + \cos A)^2 + (\sin A - \cos A)^2 = 2$


해설


② $1 - 2\sin^2 A = 1 - 2(1 - \cos^2 A) = 2\cos^2 A - 1$

 $= 1 + 2\sin A\cos A + 1 - 2\sin A\cos A = 2$

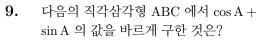
- $4 \tan A + \frac{1}{\tan A} = \frac{\sin A}{\cos A} + \frac{\cos A}{\sin A}$ $= \frac{\sin^2 A + \cos^2 A}{\sin A \cos A}$ $= \frac{1}{\sin A \cos A}$

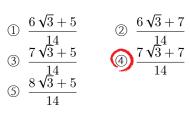
 $(\sin A + \cos A)^2 + (\sin A - \cos A)^2$

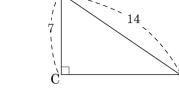
8. 다음 주어진 표를 보고 x + y 의 값을 구하면?

각도	sin	cos	tan	
÷	:	÷	:	
14°	0.2419	0.9703	0.2493	
15 °	0.2588	0.9859	0.2679	
16°	0.2766	0.9613	0.2867	
:	:	÷	:	

 $\sin x = 0.2766$, $\tan y = 0.2493$

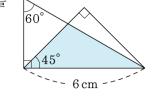

① 28° ② 29° ③30°


④ 31° ⑤ 32°


 $\sin x = 0.2766 \therefore x = 16^{\circ}$

해설

 $\tan y = 0.2493 :: y = 14^{\circ}$ $\therefore x + y = 16^{\circ} + 14^{\circ} = 30^{\circ}$



$$\overline{AC} = \sqrt{14^2 - 7^2} = \sqrt{147} = 7\sqrt{3}$$

$$\cos A + \sin A = \frac{7\sqrt{3}}{14} + \frac{7}{14} = \frac{7\sqrt{3} + 7}{14}$$

$$\cos A + \sin A = \frac{143}{14} + \frac{1}{14} = \frac{143}{14}$$

- 10. 다음 그림과 같이 두 개의 삼각자를 겹쳤을 때, 겹쳐진 부분의 넓이를 구하여라.
 - ① $5(\sqrt{3}-1)$ cm²
 - $2 7 \left(\sqrt{3}-1\right) cm^2$
 - $\boxed{3}9\left(\sqrt{3}-1\right)cm^2$
 - $4 \ 11 \left(\sqrt{3} 1\right) \text{cm}^2$
 - $3 22 (\sqrt{2} 1) \text{ cm}^2$

	$\overline{\mathrm{AD}} = x$ 라 하면
	$\overline{\mathrm{BD}} = x, \overline{\mathrm{DC}} = \sqrt{3}x$
	$\overline{BC} = x + \sqrt{3}x = (1 + $
- 1	i i i i i i i i i i i i i i i i i i i

 $\sqrt{3}$)x =

6 (cm) $\overline{\mathrm{AD}} = 3\left(\sqrt{3} - 1\right) \ (\mathrm{cm})$

 $\therefore S = \frac{1}{2} \times 6 \times 3 \left(\sqrt{3} - 1\right) = 9 \left(\sqrt{3} - 1\right) \left(cm^{2}\right)$

11. $4\sin 30^{\circ} \tan 45^{\circ} \cos 60^{\circ} - 2$ 의 값을 구하여라.

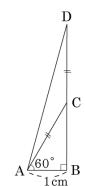
답:

▷ 정답: -1

(준식) = $4 \times \frac{1}{2} \times 1 \times \frac{1}{2} - 2 = 1 - 2 = -1$

12. 이차방정식 $6x^2 - 3x - 2\sqrt{3}x + \sqrt{3} = 0$ 의 두 근이 $\tan A$, $\sin A$ 일 때, $\cos A$ 의 값은? (단, $0^{\circ} < A < 90^{\circ}$, $\tan A \ge \cos A$)

① $\frac{\sqrt{3}}{3}$ ② $\frac{\sqrt{3}}{2}$ ③ $\sqrt{3}$ ④ $\frac{\sqrt{2}}{3}$ ⑤ $\frac{\sqrt{2}}{2}$


 $6x^{2} - 3x - 2\sqrt{3}x + \sqrt{3} = 0$ $6x^{2} - (3 + 2\sqrt{3})x + \sqrt{3} = 0$

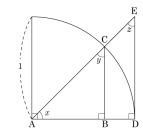
$$(2x-1)(3x-\sqrt{3}) = 0$$

$$\therefore x = \frac{1}{2} \, \text{ £} \, \stackrel{\smile}{=} x = \frac{\sqrt{3}}{3}$$

따라서
$$\tan A=\frac{\sqrt{3}}{3}$$
 이고 $\sin A=\frac{1}{2}$ 이므로 $\angle A=30^\circ$,
$$\cos 30^\circ=\frac{\sqrt{3}}{2}$$
 이다.

13. 다음 그림의 $\triangle ABC$ 는 $\overline{AB}=1 \mathrm{cm}$, $\angle ABC=90 \, ^{\circ}$, $\angle {
m CAB} = 60\,^{\circ}$ 인 직각삼각형이고, $\overline{
m AC} = \overline{
m CD}$ 이다. 이때, tan 75 ° 의 값은?

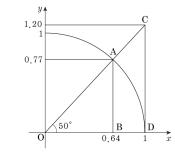
 $4 \ 2 + \sqrt{2}$ $1 + \sqrt{2}$


① $2 + \sqrt{3}$ ② $1 + \sqrt{3}$ ③ $\sqrt{3}$

이등변삼각형 DCA 에서 ∠ACB = 30°이므로 ∠CAD = ∠CDA = 15°

 $\overline{AC} = \frac{1}{\cos 60^{\circ}} = 2$

 $\triangle ABD$ 에서 $\tan \angle DAB = \frac{\overline{BD}}{\overline{AB}} = \overline{BC} + \overline{CD}$ $\therefore \tan 75^{\circ} = 2 + \sqrt{3}$


14. 다음 그림과 같이 반지름의 길이가 인 사분원에서 옳지 <u>않은</u> 것은?

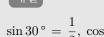
- $\tan x = \overline{DE}$ ② $\sin y = \overline{AB}$

$$3\tan y = \frac{\overline{AD}}{\overline{DE}} = \frac{1}{\overline{DE}} \ (\because \angle y = \angle z \)$$

15. 다음 그림과 같이 좌표평면 위의 원점 O 를 중심으로 하고 반지름의 길이가 1 인 사분원에서 $\sin 50^\circ + \tan 50^\circ - \sin 40^\circ$ 의 값은?

해설

① 0.21


② 0.64 ③ 1.07

4 1.33

③ 2.61

0.77 + 1.20 - 0.64 = 1.33

- **16.** 직선 $x \sin 30^\circ + y \cos 45^\circ = 1$ 의 그래프가 x 축과 이루는 예각의 크기를 a 라 할 때, $\sin a$ 의 값은?
 - ① $\frac{\sqrt{2}}{2}$ ② $\frac{3\sqrt{3}}{2}$ ③ $\frac{\sqrt{2}}{3}$ ④ $\frac{\sqrt{3}}{3}$ ⑤ $\frac{2\sqrt{3}}{3}$

- $\sin 30^\circ = \frac{1}{2}, \cos 45^\circ = \frac{1}{\sqrt{2}}$ 을 대입하면 $x \times \frac{1}{2} + y \times \frac{1}{\sqrt{2}} = 1$ 직선 $\frac{x}{2} + \frac{y}{\sqrt{2}} = 1$ 과 x 축, y O
- 축과의 교점을 각각 A, B 라 하면 A(2, 0), B(0, √2) 이므
- 로 $\overline{AB} = \sqrt{\overline{AO}^2 + \overline{BO}^2} = \sqrt{2^2 + (\sqrt{2})^2} = \sqrt{6}$
- $\therefore \sin a = \frac{\overline{OB}}{\overline{AB}} = \frac{\sqrt{2}}{\sqrt{6}} = \frac{\sqrt{3}}{3}$

17. $\cos(2x+40^\circ) = \frac{1}{2}$ 일 때, $\tan 6x$ 의 값은? (단, $0^\circ < x < 90^\circ$)

① $\frac{\sqrt{3}}{3}$ ② $\frac{\sqrt{3}}{2}$ ③ 1 ④ $\sqrt{3}$ ⑤ 3

 $\cos 60^\circ = \frac{1}{2}$ 이므로 $2x + 40^\circ = 60^\circ$, $x = 10^\circ$ 이다.

 $\therefore \tan 60^\circ = \sqrt{3}$

18. 이차방정식 $2x^2 - ax + 1 = 0$ 의 한 근이 $\sin 60^\circ - \sin 30^\circ$ 일 때, 상수 a 의 값을 구하여라.

답:

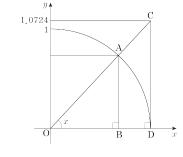
ightharpoonup 정답: $2\sqrt{3}$

 $\sin 60^{\circ} - \sin 30^{\circ} = \frac{\sqrt{3}}{2} - \frac{1}{2} = \frac{\sqrt{3} - 1}{2} \circ | \Box \Rightarrow \frac{\sqrt{3} - 1}{2} \Rightarrow \Rightarrow \Rightarrow \circ \land 2$ 식의 x 에 대입하면 $2\left(\frac{\sqrt{3} - 1}{2}\right)^2 - \left(\frac{\sqrt{3} - 1}{2}\right)a + 1 = 0, \left(\frac{\sqrt{3} - 1}{2}\right)a = 3 - \sqrt{3}$ 따라서 $a = \frac{2(3 - \sqrt{3})}{\sqrt{3} - 1} = 2\sqrt{3}$

19. 다음 그림과 같이 언덕 위에 국기 게양대가 서 있다. A 지점에서 국기 게양대의 꼭대기 C 를 올려다 본 각이 60 ° 이고, A 지점에서 국기 게양대 방향으로 10 m 걸어간 B 지점 에서부터 오르막이 시작된다. 오르막 $\overline{\mathrm{BD}}$ 의 길이가 $6\sqrt{3}\,\mathrm{m}$ 이고 오르막의 경사가 $30\,^{\circ}$ 일 때, 국기 게양대의 높이 $\overline{\mathrm{CD}}$ 를 구하여라.

 $\underline{\mathrm{m}}$

▷ 정답: 16 √3 m

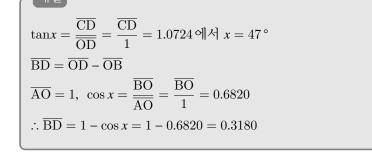

답:

 $\overline{\text{AH}} = 10 + 6\sqrt{3}\cos 30^{\circ}$ = $10 + 6\sqrt{3} \times \frac{\sqrt{3}}{2}$ = 19 (m)

 $\overline{\rm DH} = 6\sqrt{3}\sin30^{\circ} = 6\sqrt{3} \times \frac{1}{2} = 3\sqrt{3} \ (\, \rm m)$ $\overline{\text{CH}} = \overline{\text{AH}} \tan 60^{\circ} = 19 \sqrt{3} \text{ (m)}$

 $\therefore \overline{CD} = \overline{CH} - \overline{DH} = 19\sqrt{3} - 3\sqrt{3} = 16\sqrt{3} \text{ (m)}$

20. 다음 그림과 같이 반지름의 길이가 1 인 사분원에서 삼각비의 표를 이용하여 \overline{BD} 의 길이를 구하면?


46° 0.7193 0.6947 1	민트(tan)	탄젠!	크사인(cos)	사인(sin)	각도
	.0000	1.0	0.7071	0.7071	45°
47° 0.7314 0.6820	.0355	1.0	0.6947	0.7193	46°
	.0724	1.0	0.6820	0.7314	47°
48° 0.7431 0.6691 1	.1106	1.	0.6691	0.7431	48°

40.3180 **5** 0.6820

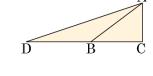
① -0.724 ② -0.6820

③ 0.3903

해설

21. x 에 관한 이차방정식 $2x^2-11x+a=0$ 의 한 근이 $\sin 90^\circ+\cos 0^\circ$ 일 때, a 의 값을 구하면?

- ① 14 ② 13 ③ 12 ④ 11 ⑤ 10

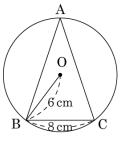

이차방정식 $2x^2-11x+a=0$ 에 x=2 를 대입하면, $2\times 2^2 11 \times 2 + a = 0$ 8 - 22 + a = 0, a = 14

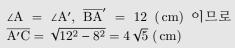
- **22.** 함수 $y = \sin^2 x 2\sin x + 2$ 의 최댓값과 최솟값은? (단, $0^{\circ} \le x \le 90^{\circ}$
 - ① 최댓값 2 , 최솟값 1 ② 최댓값 3 , 최솟값 1
 - ⑤ 최댓값 1 , 최솟값 -3
 - ③ 최댓값 2 , 최솟값 -1 ④ 최댓값 4 , 최솟값 1

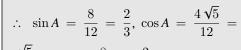
 $\sin x = A \ (0 \le A \le 1)$ 라 하면

해설

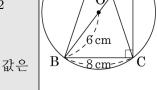
 $y = A^2 - 2A + 2 = (A - 1)^2 + 1$ A=0일 때, 최댓값 2A=1일 때, 최솟값 $1 (0 \le A \le 1)$ **23.** 다음 그림에서 삼각형 ABC 는 \overline{AB} : \overline{BC} : \overline{CA} = 5 : 4 : 3 인 직각삼 각형이고 \overline{AB} = \overline{BD} 일 때, $\tan(\angle ADB)$ 의 값을 구하여라.

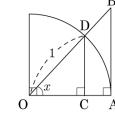

▶ 답:


ightharpoonup 정답: $rac{1}{3}$


 $\overline{\mathrm{AB}}=5a,\ \overline{\mathrm{BC}}=4a,\ \overline{\mathrm{CA}}=3a$ 라 하면

 $\overline{\text{CD}} = \overline{\text{AB}} + \overline{\text{BC}} = 9a$ 따라서 $\tan\left(\angle \mathrm{ADB}\right) = \frac{\overline{\mathrm{AC}}}{\overline{\mathrm{CD}}} = \frac{3a}{9a} = \frac{1}{3}$ 이다.


- 24. 다음 그림과 같이 반지름의 길이가 $6 \, \mathrm{cm}$ 인 원 O 에 내접하는 $\triangle ABC$ 에서 $\overline{BC}=8\,\mathrm{cm}$ 일 때, $\cos A \times \sin A \times \tan A$ 의 값은?



- 지 $\frac{\sqrt{5}}{3}$, $\tan A = \frac{8}{4\sqrt{5}} = \frac{2}{\sqrt{5}}$ 따라서 $\cos A \times \sin A \times \tan A$ 의 값은 $\frac{\sqrt{5}}{3} \times \frac{2}{3} \times \frac{2}{\sqrt{5}} = \frac{4}{9}$ 이다.

25. 다음 그림과 같이 반지름의 길이가 1 인 사분원에서 $\overline{\text{CD}} = 0.8$ 일 때, $\Box \text{ABDC}$ 의 둘레의 길이에 300 을 곱한 값을 구하여라.

각도	사인	코사인	단센트
53°	0.80	0.60	1.33
54°	0.81	0.59	1.38
55°	0.82	0.57	1.43

▷ 정답: 959

▶ 답:

V 0B

 $\sin x = \frac{\overline{\text{CD}}}{1}$ 이므로 $x = 53^\circ$ $\tan 53^\circ = \frac{\overline{\text{BA}}}{1} = 1.33$, $\cos 53^\circ = \frac{\overline{\text{OC}}}{1} = \frac{1}{\overline{\text{OB}}} = 0.6$ 이므로 $\overline{\text{AB}} = 1.33$, $\overline{\text{BD}} = \overline{\text{OB}} - \overline{\text{OD}} = \frac{2}{3}$, $\overline{\text{CD}} = 0.8$, $\overline{\text{CA}} = \overline{\text{OA}} - \overline{\text{OC}} = 0.4$ 따라서 $300 \times (\Box \text{ABDC}) = \Xi \Box = 399 + 200 + 240 + 240$

120 = 959