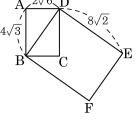
다음 그림과 같이 직사각형 ABCD 의 대 각선을 한 변으로 하는 직사각형 BDEF 의 넓이는?
A 2√6,



삼각형 ABD 에서 피타고라스 정리에 따라
$$\sqrt{(2\sqrt{6})^2 + (4\sqrt{3})^2} = 6\sqrt{2}$$
 따라서 직사각형 BDEF의 넓이는 $6\sqrt{2} \times 8\sqrt{2} = 96$ 이다.

해설

①
$$\frac{\sqrt{3}}{3}$$

②
$$6\sqrt{3}$$

넓이가 $9\sqrt{3}$ 인 정삼각형의 높이는 ?

②
$$6\sqrt{3}$$
 ③ $\frac{4\sqrt{2}}{3}$ ④ $\frac{3\sqrt{3}}{2}$

3. 좌표평면 위의 두 점 A(-3, 4), B(6, x) 사이의 거리가 √82 일 때, x 의 값을 모두 구하면?

$$\overline{AB} = \sqrt{(-3-6)^2 + (4-x)^2} = \sqrt{82}$$

$$(4-x)^2 + 81 = 82$$

$$(4-x)^2 = 1$$
따라서 $x = 5$ 또는 3 이다.

4. 좌표평면 위의 세 점 A(-1, 2), B(5, -2), C(1, 5) 를 꼭짓점으로 하는 △ABC 는 어떤 삼각형인가?

다음 그림에서 두 점 P(5, 1), Q(-3, -2)
사이의 거리는?

P(5,1)
Q
(-3,-2)

 $\sqrt{73}$

 $4 \sqrt{65}$

5.

① $\sqrt{5}$

② 5

해설
$$\overline{PQ} = \sqrt{\{5 - (-3)\}^2 + \{1 - (-2)\}^2}$$

$$= \sqrt{8^2 + 3^2} = \sqrt{73}$$

6. 다음 🗆 안을 각각 순서대로 바르게 나타낸 것은? 가로, 세로, 높이가 각각 3.4.5 인 직육면체의 대각선의 길이는 이고. 한 모서리의 길이가 3인 정사면체의 높이는

① $5\sqrt{2}$, $\sqrt{6}$, $\frac{9\sqrt{2}}{4}$ ③ $5\sqrt{2}$, $2\sqrt{6}$, $\frac{9\sqrt{2}}{4}$ ⑤ $\frac{5\sqrt{2}}{3}$, $\sqrt{6}$, $\frac{3\sqrt{2}}{4}$

부피는

이다.

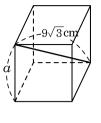
$$\frac{9\sqrt{2}}{4} \qquad \qquad 2 \quad 5\sqrt{10}, 2\sqrt{6}, \frac{3\sqrt{2}}{4} \\
\frac{9\sqrt{2}}{4} \qquad \qquad 4 \quad \frac{5\sqrt{2}}{3}, \sqrt{6}, \frac{9\sqrt{2}}{4}$$

(2) 한 모서리의 길이가 3인 정사면체의 높이를 h, 부피를 V

(1) 대각선의 길이를
$$l$$
 이라하면 $l = \sqrt{3^2 + 4^2 + 5^2} = \sqrt{50} = 5\sqrt{2}$

라고 하면
$$h = \frac{\sqrt{6}}{3} \times 3 = \sqrt{6}, V = \frac{\sqrt{2}}{12} \times 3^3 = \frac{9\sqrt{2}}{4}$$

7. 대각선의 길이가 9√3cm 인 정육면체의 한 모서리의 길이를 구하면?



 $9\,\mathrm{cm}$

$$\bigcirc 6 \, \mathrm{cm}$$

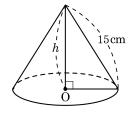
4 $9\sqrt{2}$ cm

②
$$6\sqrt{6} \text{ cm}$$

③ 18 cm

해설
한 변의 길이가
$$a$$
 인 정육면체의 대각선의 길이는 $\sqrt{a^2+a^2+a^2}=\sqrt{3}a^2=a\sqrt{3}$ 이므로 $a\sqrt{3}=9\sqrt{3}$ 으로 두면 $a=9\,\mathrm{cm}$ 이다.

8. 다음 그림과 같이 밑면의 넓이가 $100\pi \, \mathrm{cm}^2$ 이고 모선의 길이가 $15 \, \mathrm{cm}$ 인 원뿔의 높이는?



① $\sqrt{5}$ cm

2 5 cm4 10 cm

③ $5\sqrt{5}$ cm ⑤ $10\sqrt{5}$ cm

밑면의 넓이가 $\pi r^2 = 100\pi (\text{cm}^2)$ 이므로 밑면의 반지름은 $10\,\text{cm}$ 따라서 원뿔의 높이 $h=\sqrt{15^2-10^2}=5\,\sqrt{5}(\,\text{cm})$ 이다.

9. 다음 그림의 □ABCD 는 한 변의 길이가 4cm 4 cm 이고 $\angle B = 60^{\circ}$ 인 마름모이다. \overline{AC} 와 BD 는 마름모의 대각선일 때, 대각선 BD 의 길이를 구하여라

답: cm

 \triangleright 정답: $4\sqrt{3}$ cm

사각형 ABCD 가 마름모이므로 $\overline{AB} = \overline{BC} = 4 \text{ cm}$ 이므로 $\triangle ABC$ 는 정삼각형이다. $\triangle ABC$ 의

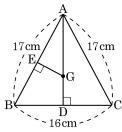
넓이는 $\frac{\sqrt{3}}{4} \times 4^2 = 4\sqrt{3} \text{ (cm}^2)$ 이고 마름모의 넓이는 $8\sqrt{3} \text{ (cm}^2)$

이다.

따라서 $\overline{AC} \times \overline{BD} = 4 \times \overline{BD} = 16 \sqrt{3} \text{ (cm}^2), \overline{BD} = 4 \sqrt{3} \text{ cm}$ 이다.

10. 다음 그림과 같은 이등변삼각형의 무게중심을 G라 할 때, 점 G에서 \overline{AB} 에 이르는 거리를 구하여라. $^{\prime\prime}$

cm



$$ightharpoonup$$
 정답: $\frac{80}{17}$ $\underline{\mathrm{cm}}$

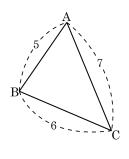
$$\overline{AG} = (\sqrt{17^2 - 8^2}) \times \frac{2}{3} = 15 \times \frac{2}{3} = 10$$

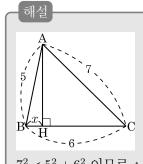
 $\triangle ABG = \triangle ACG$ 이므로

$$\triangle ABC$$
 의 넓이에서
$$16 \times 15 \times \frac{1}{2} = 17 \times \overline{EG} \times \frac{1}{2} \times 2 + 16 \times 5 \times \frac{1}{2}$$

$$\therefore \overline{EG} = \frac{80}{17} (cm)$$

11. $\overline{AB} = 5$, $\overline{BC} = 6$, $\overline{CA} = 7$ 일 때, $\triangle ABC$ 의 넓이는 $a\sqrt{b}$ 이다. a+b 의 값을 구하여라.(단, b는 최소의 자연수)





 $\overline{AD} = 2\sqrt{6}$

 $7^2 < 5^2 + 6^2$ 이므로 $\triangle ABC$ 는 예각삼각형이다. 점 A 에서 \overline{BC} 에 내린 수선의 발을 D 라 한다. $5^2 - x^2 = 7^2 - (6 - x)^2$ $\therefore x = 1$

$$\therefore ([ਖ] \circ]) = \frac{1}{2} \times 6 \times 2 \sqrt{6} = 6 \sqrt{6}$$

12. 다음 그림에서 BD = 4√3, ∠ABC = 45°, ∠BDC = 60°일 때, AB 의 길이는?

①
$$\sqrt{6}$$
 ② 3

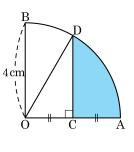
 $4 \ 3\sqrt{2}$

$$(5) 2\sqrt{6}$$

(3) $2\sqrt{3}$

$$\angle CBD = 30^{\circ}$$
이므로
 $\sqrt{3}: 2 = \overline{BC}: 4\sqrt{3}, \overline{BC} = 6$
 $\angle ABC = \angle ACB = 45^{\circ}$ 이므로 $1: \sqrt{2} = \overline{AB}: 6$
 $\therefore \overline{AB} = 3\sqrt{2}$

13. 다음 그림과 같이 반지름이 4cm 인 사분원이 있다. $\overline{OC} = \overline{CA}$, $\overline{DC} \perp \overline{OA}$ 일 때. 색칠한 부분의 넓이를 구하면?



①
$$8\sqrt{2}\pi \,\mathrm{cm}^2$$

 $=\pi \times 4^2 \times \frac{60^{\circ}}{360^{\circ}} - \frac{1}{2} \times 2\sqrt{3} \times 2$

 $=\frac{8}{2}\pi-2\sqrt{3}(\text{cm}^2)$

 $(2) \left(\frac{16}{3}\pi - \sqrt{3}\right) \text{ cm}^2$

 $4 \left(\frac{16}{2}\pi - 2\sqrt{3}\right) \text{ cm}^2$

 $\angle DOC = 60^{\circ}$ $\overline{CA} = 2 \, \text{cm}$

0]

해설

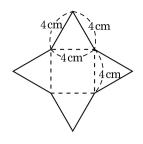
 $2\sqrt{3}$ (cm)

높이는?

대각선의 길이가 24cm 인 정육면체의 한 변의 길이로 만든 정삼각형의

해설 정육면체의 한 모서리의 길이를
$$x$$
 라 하면, $x\sqrt{3}=24$, $x=8\sqrt{3}$ cm 따라서, 정삼각형의 높이는 $\frac{\sqrt{3}}{2}\times 8\sqrt{3}=12$ (cm) 이다.

15. 다음 그림과 같은 전개도로 사각뿔을 만들 때, 사각뿔의 높이를 구하여라.)



▶ 답:

 $\underline{\mathrm{cm}}$

ightharpoonup 정답: $2\sqrt{2}$ $\underline{\mathrm{cm}}$

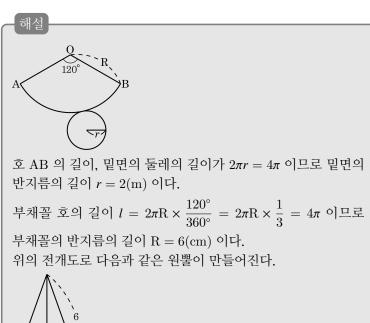
해설
$$\overline{AC} = \sqrt{4^2 + 4^2} = 4\sqrt{2} \text{ (cm)} \therefore \overline{AH} = 2\sqrt{2} \text{ cm}$$

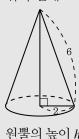
 $\triangle OAH$ 에서 $\overline{AH} = 2\sqrt{2} \, \mathrm{cm}, \ \overline{AO} = 4 \, \mathrm{cm}$ 이므로

 $\overline{OH} = \sqrt{4^2 - (2\sqrt{2})^2} = \sqrt{8} = 2\sqrt{2} \text{(cm)}$ 이다.

16. 호 AB 의 길이는 4π 이고 중심각의 크기가 120° 인 원뿔의 전개도가 있다. 이 원뿔의 부피를 구하면?

① $\frac{8\sqrt{2}}{3}\pi\text{cm}^3$ ② $\frac{10\sqrt{3}}{3}\pi\text{cm}^3$ ③ $\frac{16\sqrt{2}}{3}\pi\text{cm}^3$ ④ $\frac{16\sqrt{3}}{3}\pi\text{cm}^3$ ⑤ $16\sqrt{2}\pi\text{cm}^3$

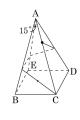




원뿔의 높이 $h = \sqrt{6^2 - 2^2} = \sqrt{36 - 4} = \sqrt{32} = 4\sqrt{2}$ (cm) 이다.

원뿔의 부피 $V = \frac{1}{3} \times 2 \times 2 \times \pi \times 4\sqrt{2} = \frac{16\sqrt{2}}{3}\pi(\text{cm}^3)$ 이다.

17. 다음 그림과 같이 $\overline{AB} = 12 \text{cm}$, $\angle BAC = 15^\circ$ 인 정사각뿔이 있다. 점 C 에서 옆면을 지나 \overline{AC} 에 이르는 최단거리를 구하면?

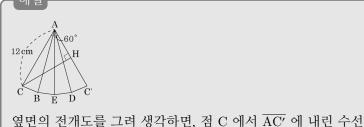


- ① $3\sqrt{3}$ cm
- ② $4\sqrt{3}$ cm

 $3 5\sqrt{3}$ cm

 $46\sqrt{3}$ cm

 $\bigcirc 7\sqrt{3}$ cm



CH 의 길이가 최단거리가 된다.

 $\overline{\mathrm{AC}}:\overline{\mathrm{CH}}=2:\sqrt{3}$ 이므로

$$\therefore \overline{CH} = 12 \times \frac{\sqrt{3}}{2} = 6\sqrt{3}(cm)$$

18. 다음 그림과 같이 □OAB'A'은 정사각형이고 A' B' C' ☐ 두 점 B, C 는 각각 점 O 를 중심으로 하고, OB', OC'을 반지름으로 하는 원을 그릴 때 x 축과 만나는 교점이다. OC = 2√3 cm 일 때, 사분원 OAA'의 넓이는?

$$1 \pi \, \mathrm{cm}^2$$

$$2\pi \text{ cm}^2$$

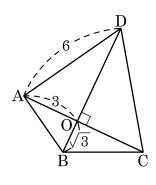
$$\Im \pi \text{cm}^2$$

$$4\pi \,\mathrm{cm}^2$$

$$\overline{OA} = x$$
라고 하면 $\overline{OC} = \sqrt{x^2 + x^2 + x^2} = x\sqrt{3} = 2\sqrt{3}$
 $\therefore x = 2$

따라서 사분원 OAA'의 넓이는
$$\frac{1}{4} \times 2^2 \times \pi = \pi \text{(cm}^2\text{)} \text{이다.}$$

19. 다음 그림과 같이 $\square ABCD$ 에서 두 대각선이 서로 직교하고, $\overline{AD} = 6$, $\overline{AO} = 3$, $\overline{BO} = \sqrt{3}$ 일 때, $\overline{CD}^2 - \overline{BC}^2$ 의 값을 구하여라.

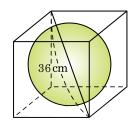


 $\triangle ABO$ 에서 $\overline{AB}^2 = 3^2 + (\sqrt{3})^2 = 12 \text{ 이므로}$

$$12 + \overline{CD}^2 = \overline{BC}^2 + 6^2$$

 $\overline{\mathrm{CD}}^2 - \overline{\mathrm{BC}}^2 = 36 - 12 = 24$

20. 대각선 길이가 36 cm 인 정육면체 안에 꼭 맞는 구가 있다. 이 구의 부피를 구하여라.



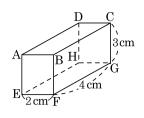
<u>cm³</u>

ightharpoons 정답: $864\sqrt{3}\pi \mathrm{cm}^3$

정육면체의 한 모서리의 길이를 a 라고 하면 $\sqrt{3}a = 36$: $a = 12\sqrt{3}$ (cm) (구의 반지름의 길이) = $6\sqrt{3}$ (cm)

$$(\overrightarrow{\neg} \ \stackrel{\square}{\rightarrow} \ \overrightarrow{\neg} \) = \frac{4}{3} \pi \times \left(6 \sqrt{3} \right)^3 = 864 \sqrt{3} \pi \ \left(\text{cm}^3 \right)$$

21. 다음 그림은 세 모서리의 길이가 각각 2 cm, 4 cm, 3 cm 인 직육면체이다. 꼭짓점 A 에서 G 까지 면을 따라 움직일 때, 가장 짧은 거리를 구하여라.



> **정답**: √41 cm

(i) \overline{BC} 를 지날 때, $\triangle AGF$ 는 직각삼각형이므로

cm

$$\overline{AG} = \sqrt{(2+3)^2 + 4^2} = \sqrt{41} \text{ (cm)}$$

D
C
G
4
cm
A 2 cm
3 cm
F

 $\overline{AG}^2 = \overline{AF}^2 + \overline{FG}^2$

(ii) $\overline{\mathrm{BF}}$ 를 지날 때, $\Delta\mathrm{ACG}$ 는 직각삼각형이므로

$$\overline{AG}^2 = \overline{AC}^2 + \overline{CG}^2$$

$$\overline{AG} = \sqrt{(2+4)^2 + 3^2}$$

$$= \sqrt{45} = 3\sqrt{5} \text{ (cm)}$$

3cm

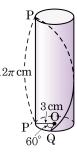
(iii) $\overline{\mathrm{CD}}$ 를 지날 때, $\Delta\mathrm{AHG}$ 는 직각삼각형이므로

 $\overline{AG} = \sqrt{(3+4)^2 + 2^2} = \sqrt{53}$ (cm)

$$\overline{AG}^2 = \overline{AH}^2 + \overline{HG}^2$$

(i), (ii), (iii)에 의하여 최단거리는 √41 (cm) 이다.

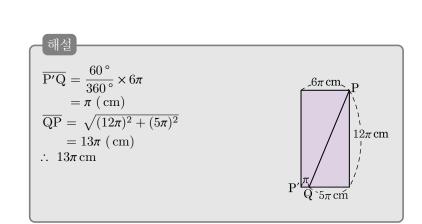
22. 다음 그림과 같이 밑면의 반지름 OP' 의 길이가 3 cm 이고, 높이 PP' 의 길이가 12π cm 인 원기둥이 있다. 밑면의 둘레 위에 ∠P'OQ = 60°가 되게 점 Q 를 잡고, 점 P 에서 점 Q 까지 먼 쪽으로 실을 12π cm 감았을 때, 가장 짧은 실의 길이를 구하여라.



▶ 답:

<u>cm</u>

▷ 정답: 13π<u>cm</u>



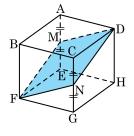
23. 좌표평면 위의 점 A(3, 1), P(0, p), Q(p-1, 0), B(-2, 6) 에 대하여 $\overline{AP} + \overline{PQ} + \overline{QB}$ 의 값이 최소가 될 때. 직선 AP 와 QB 의 기울기의 합을 구하여라

- FF '

$$ightharpoonup$$
 정답: $-\frac{8}{5}$

 $\overline{AB'}$ 의 방정식은 $y-1=\frac{1-5}{3+2}(x-3)$ 이므로 $-\frac{4}{5}-\frac{4}{5}=-\frac{8}{5}$ 이다.

24. 다음 그림과 같이 한 모서리의 길이가 12 cm 인 정육면체가 있다. AE 의 중점을 M, CG 의 중점을 N 이라 할 때, □MFND 의 넓이를 구하여라.



▶ 답:

해설

 $\underline{\mathrm{cm}^2}$

ightharpoonup 정답: $72\sqrt{6}$ cm^2

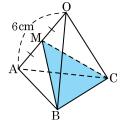
$$\triangle FGN$$
 에서 $\overline{FN} = \sqrt{12^2 + 6^2} = 6\sqrt{5}$ (cm)

따라서 $\square MFND$ 는 $\overline{MF} = \overline{FN} = \overline{ND} = \overline{DM} = 6\sqrt{5}$ (cm)

인 마름모이고 두 대각선의 길이는 각각 $\overline{\rm DF} = \sqrt{12^2 + 12^2 + 12^2} = 12\sqrt{3}$ (cm)

 $\overline{MN} = \overline{AC} = \sqrt{12^2 + 12^2} = 12\sqrt{2} \text{ (cm) 이므로}$ $\Box MFND = \frac{1}{2} \times 12\sqrt{3} \times 12\sqrt{2} = 72\sqrt{6} \text{ (cm}^2)$

25. 다음 그림과 같이 한 모서리의 길이가 $6 \, \mathrm{cm}$ 인 정사면체에서 $\overline{\mathrm{OA}}$ 의 중점을 M 이라 할 때, $\Delta \mathrm{MBC}$ 의 넓이를 구하여라.



$$\underline{\mathrm{cm}^2}$$

$$ightharpoonup$$
 정답: $9\sqrt{2}$ cm^2

$$\triangle$$
MBC 는 $\overline{BM} = \overline{CM} = 3\sqrt{3}$ (cm) 인 이등변삼각형 (높이) = $\sqrt{(3\sqrt{3})^2 - 3^2} = 3\sqrt{2}$ (cm)

$$\therefore$$
 (\triangle MBC의 넓이) = $\frac{1}{2} \times 6 \times 3\sqrt{2}$
= $9\sqrt{2}$ (cm²)