1. -1 < x < 1일 때, $\sqrt{x^2 - 2x + 1} + \sqrt{x^2 + 2x + 1}$ 의 값을 구하여라.

답:

▷ 정답: 2

해설

(준식) =
$$\sqrt{(x-1)^2} + \sqrt{(x+1)^2}$$

= $|x-1| + |x+1| = -(x-1) + (x+1) = 2$

2. -1 < a < 2일 때, $\sqrt{(a-2)^2} + |a+1|$ 을 간단히 하면?

<u>(1)</u>3 $\textcircled{4} \ 2a+1 \qquad \qquad \textcircled{5} \ -2a+1$

② -3 ③ 2a-1

해설

 $\sqrt{(a-2)^2} + |a+1| = |a-2| + |a+1|$ = -(a-2) + a + 1 = 3

3. a > 0, b < 0일 때, $\sqrt{a^2} + \sqrt{b^2} + |-a| + |-b|$ 를 간단히 하면?

① 2a - 2b ② 2a ③ -2b $\textcircled{4} \ 2a + 2b$ $\textcircled{5} \ 0$

a>0, b<0이므로

해설

|a| + |b| + |-a| + |-b|= a - b - (-a) + (-b) = 2a - 2b

4.
$$\frac{1-\sqrt{2}+\sqrt{3}}{1+\sqrt{2}-\sqrt{3}}$$
을 간단히 하여라.

①
$$\frac{\sqrt{3} - \sqrt{2}}{2}$$
 ② $\frac{\sqrt{2} + \sqrt{3}}{2}$ ③ $\frac{\sqrt{2} + \sqrt{6}}{2}$ ③ $\frac{\sqrt{2} + \sqrt{6}}{2}$

$$\begin{vmatrix} \frac{1-\sqrt{2}+\sqrt{3}}{1+\sqrt{2}-\sqrt{3}} \\ = \frac{(1-\sqrt{2}+\sqrt{3})(1+\sqrt{2}+\sqrt{3})}{(1+\sqrt{2}-\sqrt{3})(1+\sqrt{2}+\sqrt{3})} \end{vmatrix}$$

$$= \frac{(1 - \sqrt{2} + \sqrt{3})(1 + \sqrt{2} + \sqrt{3})}{(1 + \sqrt{2} - \sqrt{3})(1 + \sqrt{2} + \sqrt{3})}$$

$$= \frac{2(1+\sqrt{3})}{(1+2+2\sqrt{2})-3} = \frac{1+\sqrt{3}}{\sqrt{2}} = \frac{\sqrt{6}+\sqrt{2}}{2}$$

$$(1+2+2\sqrt{2})-3$$
 $\sqrt{2}$ 2

5. 함수 $y = \sqrt{2x-4} + b$ 의 정의역이 $\{x \mid x \ge a\}$ 이고, 치역이 $\{y \mid y \ge -3\}$ 일 때, 상수 a, b 에 대하여 ab의 값은?

① -6 ② -3 ③ 1 ④ 3 ⑤ 6

 $2x - 4 \ge 0$ 에서 $2x \ge 4$ ∴ $x \ge 2$

해설

주어진 함수의 정의역이 $\{x \mid x \ge 2\}$ 이므로

a=2

함수 $y=\sqrt{2x-4}+b$ 의 지역은 $\{y\mid y\geq b\}$ 이므로 b=-3 $\therefore ab=-6$

6. 함수 $y = -\sqrt{ax+9} - 1$ 의 정의역이 $\{x \mid x \ge -3\}$ 이고, 치역이 $\{y \mid y \le b\}$ 일 때, 상수 a, b 에 대하여 a+b의 값은? (단, $a \ne 0$)

 $\bigcirc 1 - 2 \qquad \bigcirc 2 - 1 \qquad \bigcirc 3 \qquad 0 \qquad \bigcirc 4 \qquad 1 \qquad \bigcirc \boxed{5}$

해설 $ax + 9 \ge 0$ 에서

 $\begin{vmatrix} ax + 9 \ge 0 & 6 \\ ax \ge -9 & \therefore & x \ge -\frac{9}{a} \\ -\frac{9}{a} = -3 & 9 \\ -\frac{9}{a} = 3 & 3 \end{vmatrix}$

주어진 함수의 치역은 { y | y ≤ -1 } 이므로 b = -1 ∴ a + b = 3 + (-1) = 2

7. $y = \sqrt{2x}$ 의 그래프를 x축으로 m만큼 y축으로 n만큼 평행이동하면 $y = \sqrt{2x+6} - 2$ 과 일치한다. n-m의 값은?

①1 ② 2 ③ 3 ④ 4 ⑤ 5

 $y = \sqrt{2x+6} - 2 = \sqrt{2(x+3)} - 2$ 이므로 $y = \sqrt{2x}$ 를 x축으로 -3만큼 y축으로 -2 만큼 평행이동하면 서로 일치한다.

따라서 m=-3, n=-2 이므로 $\therefore n-m=1$

- 8. 함수 $y = \sqrt{-2x-2} 2$ 의 그래프는 $y = \sqrt{-2x}$ 의 그래프를 x축의 방향으로 m만큼, y축의 방향으로 n만큼 평행이동한 것이다. 이 때, m+n의 값은?
 - ① -4 ② -3 ③ -1 ④ 0 ⑤ 3

 $y = \sqrt{-2x-2} - 2 = \sqrt{-2(x+1)} - 2$ 의 그래프는 $y = \sqrt{-2x}$ 의 그래프를 x축의 방향으로 -1만큼, y축 방향으로 -2만큼

평행이동한 것이다. ∴ *m* + *n* = −1 − 2 = −3

해설

9. 함수 $y = \sqrt{-4x + 12} - 2$ 는 함수 $y = a\sqrt{-x}$ 의 그래프를 x 축의 방향으로 b 만큼, y 축의 방향으로 c 만큼 평행이동한 것이다. a+b+c 의 값을 구하여라.

답:

➢ 정답: 3

$$y = \sqrt{-4(x-3)} - 2 = 2\sqrt{-(x-3)} - 2$$
이고
 $y = 2\sqrt{-x} \xrightarrow{x^{\frac{2}{3}} 3} y = 2\sqrt{-(x-3)} - 2$ 이므로

a = 2, b = 3, c = -2

 $\therefore a + b + c = 2 + 3 - 2 = 3$

10. 무리함수 $y=\sqrt{2x+1}+2$ 의 그래프를 평행이동 $f:(x,y)\to(x+y)$ $a,\ y+b)$ 에 의해 옮긴 그래프의 식이 $y=\sqrt{ax+b}+c$ 일 때, 상수 a, b, c의 합 a+b+c의 값을 구하면?

② -1 ③ 0 ④ 1 ⑤ 2

해설 $y = \sqrt{2x+1} + 2$ 의 그래프를

x 축의 방향으로 a 만큼, y 축의 방향으로 b 만큼 평행이동한 그래프의 식은 $y = \sqrt{2(x-a) + 1} + 2 + b$

 $= \sqrt{2x - 2a + 1} + 2 + b$ 이 식이 $y = \sqrt{ax + b} + c$ 와 같으므로

a = 2, -2a + 1 = b, 2 + b = c따라서, a=2, b=-3, c=-1 이므로

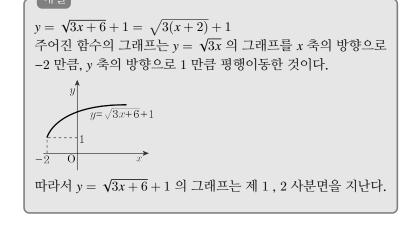
 $\therefore a+b+c=-2$

- **11.** 무리함수 $y = -\sqrt{-2(x-2)} + 3$ 가 지나는 모든 사분면은?
 - ① 1,2 사분면
- ② 1,4 사분면
- ③1,2,3 사분면 ⑤ 1,3,4 사분면
- ④ 2,3,4 사분면

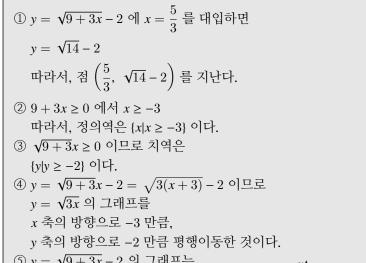
꼭지점이 (2,3)이고 (0,1)을 지나므로 ∴ 1,2,3 사분면을 지난다.

12. 함수 $y = \sqrt{3x+6} + 1$ 의 그래프가 지나는 모든 사분면은?

- ③ 제 1 , 4 사분면
- ① 제 1,2 사분면 ② 제 1,3 사분면 ④ 제 1,2,3 사분면
- ⑤ 제 1 , 3 , 4 사분면



- **13.** 무리함수 $y = \sqrt{9 + 3x} 2$ 에 대한 다음 설명 중 옳은 것을 고르면?
 - ① 그래프는 x 축과 점 $\left(\frac{5}{3}, 0\right)$ 에서 만난다.
 - ② 정의역은 {x|x ≤ -3} 이다.
 - ③ 치역은 {y|y ≥ -1} 이다.
 - ④ 그래프를 평행이동하면 $y = -\sqrt{3x}$ 의 그래프와 겹칠 수 있다.
 - ⑤ 제4 사분면을 지나지 않는다.



⑤ $y = \sqrt{9+3x} - 2$ 의 그래프는 그림과 같으므로 제4 사분면을 지나지 않는다.

14. 정의역이 $\{x \mid x < 2\}$ 인 두 함수 $f(x) = \frac{10-3x}{x-2}, \ g(x) = 2\sqrt{5-x} + 7$ 에 대하여 $(g \circ f)(-2)$ 의 값을 구하여라.

▶ 답:

▷ 정답: 13

 $(g \circ f)(x) = g(f(x))$ 이므로 $(g \circ f)(-2) = g(f(-2))$ $f(-2) = \frac{10 - 3 \cdot (-2)}{-2 - 2} = -4$ $\therefore (g \circ f)(-2) = g(-4) = 2\sqrt{5 - (-4)} + 7 = 13$

15. 함수 $y = \sqrt{x-1} + 2$ 의 역함수를 g(x)라 할 때 g(3)의 값은?

① 3 3 0 $4 \ 2 + \sqrt{2}$ $3 \ 4$

해설 $y = \sqrt{x-1} + 2 에서$

 $y-2=\sqrt{x-1}$ 이 식의 양변을 제곱하면 $y^2 - 4y + 4 = x - 1$ $x = y^2 - 4y + 4 + 1$

따라서 $g(x) = x^2 - 4x + 5 (x \ge 2)$ 이므로 $g(3) = 3^2 - 4 \cdot 3 + 5 = 9 - 12 + 5 = 2$

16. 실수 a,b가 $\sqrt{a}\sqrt{b} = -\sqrt{ab}$ 일 때, 다음 중 옳지 <u>않은</u> 것은?

- ① $\sqrt{(-b)^2} = -b$ ② $(-\sqrt{-a})^2 = -a$
- $\sqrt[3]{\sqrt{ab^2}} = -b\sqrt{a}$ $\sqrt[3]{\frac{\sqrt{a}}{\sqrt{b}}} = \sqrt{\frac{a}{b}}$

 $\sqrt{a}\sqrt{b} = -\sqrt{ab}$ 이면 $a < 0, \ b < 0$ ④의 경우 $(\sqrt{a})^2 = |a|(i)^2 = -|a| = a$ 이므로 옳지 않다.

17. x-y < 0, xy < 0일 때, $\sqrt{x^2 - 2xy + y^2} + \sqrt{x^2} - |y|$ 를 간단히 하면?

① 2x $\bigcirc -2y$

② 2y $\Im 2x - 2y$

해설

 $x - y < 0, \ xy < 0 \Rightarrow x < 0, \ y > 0$

 $\sqrt{x^2 - 2xy + y^2} + \sqrt{x^2} - |y|$ $= \sqrt{(x - y)^2} + |x| - |y|$

$$= |x - y| + |x| - |y|$$

$$= -(x - y) - x - y =$$

$$= -(x - y) - x - y = -2x$$

- **18.** $\sqrt{12-6\sqrt{3}}$ 의 정수 부분을 a, 소수 부분을 b 라고 할 때, $\frac{1}{b}-a$ 의 값은?
 - ① $1 \sqrt{3}$ ② $1 + \sqrt{3}$ ③ $3 + \sqrt{3}$ ④ $3 \sqrt{3}$ ⑤ $-\frac{5 + \sqrt{3}}{2}$

$$\sqrt{12 - 2\sqrt{27}} = \sqrt{9} - \sqrt{3} = 3 - \sqrt{3}$$

$$1 < \sqrt{3} < 2, -2 < -\sqrt{3} < -1, 1 < 3 - \sqrt{3} < 2$$

$$a = 1, b = 3 - \sqrt{3} - 1 = 2 - \sqrt{3}$$

$$\frac{1}{b} - a = \frac{1}{2 - \sqrt{3}} - 1 = 2 + \sqrt{3} - 1 = 1 + \sqrt{3}$$

19. $\sqrt{19-8\sqrt{3}}$ 의 정수 부분을 a, 소수 부분을 b라 할 때, $\frac{1}{b}-a$ 의 값은?

① $\sqrt{3}$ ② $-\sqrt{3}$ ③ $2\sqrt{3}$ ④ $-2\sqrt{3}$ ⑤ 1

$$\sqrt{19 - 8\sqrt{3}} = \sqrt{19 - 2\sqrt{48}} = \sqrt{16} - \sqrt{3}$$

따라서, $a = 2$, $b = (4 - \sqrt{3}) - 2 = 2 - \sqrt{3}$
$$\therefore \frac{1}{b} - a = \frac{1}{2 - \sqrt{3}} - 2 = (2 + \sqrt{3}) - 2 = \sqrt{3}$$

$$b \quad 2 - \sqrt{3}$$

20. $x = \sqrt{11 + 6\sqrt{2}}$ 일 때, $x^2 - 6x + 10$ 의 값을 구하면?

① -2 ② 0 ③ $2\sqrt{2}$ ④ 3 ⑤ $2\sqrt{3}$

 $x = \sqrt{11 + 2\sqrt{18}} = 3 + \sqrt{2}$ $x-3=\sqrt{2}$, 양변을 제곱하면

 $x^2 - 6x + 9 = 2$, 양변에 1을 더하면 $\therefore x^2 - 6x + 10 = 3$

- **21.** x, y가 유리수이고, 등식 $x^2 + \sqrt{3}y^2 2x + 2\sqrt{3}y 3 3\sqrt{3} = 0$ 이 성립할 때, 순서쌍 (x, y)의 개수는?
 - ① 2 개 ② 4 개 ③ 6 개 ④ 8 개 ⑤ 10 개

주어진 등식을 $\sqrt{3}$ 에 대하여 정리하면 $(x^2 - 2x - 3) + (y^2 + 2y - 3)\sqrt{3} = 0$

해설

여기서, $x^2 - 2x - 3$, $y^2 + 2y - 3$ 이 모두 유리수이고 $\sqrt{3}$ 이 무리수이므로

 $\begin{vmatrix} x^2 - 2x - 3 = 0 & \exists x, y^2 + 2y - 3 = 0 \\ \exists x, (x - 3)(x + 1) = 0 & \exists x, (y - 3)(y - 1) = 0 \end{vmatrix}$

∴ x = 3 또는 x = −1 이고 y = −3 또는 y = 1 따라서, 구하는 x, y의 쌍은

(x, y) = (3, 1), (3, -3), (-1, 1), (-1, -3)

- ${f 22}$. 다음 중 함수 $y=a\sqrt{bx}$ 의 그래프가 그려지는 사분면을 옳게 나타낸 것을 고르면? (단, ab ≠ 0)
 - ① ab > 0 이면 제 3사분면 ② ab < 0 이면 제 4사분면

 - ③a < 0,b > 0 이면 제 4사분면
 - ④ a > 0, b < 0 이면 제 1사분면 ⑤ a < 0, b < 0 이면 제 2사분면

\bigcirc $ab > 0 \Leftrightarrow (a > b$ 이고 b > 0) 또는 (a < 0 이고 b < 0) 이므로

해설

제 1사분면 또는 제 3사분면에 그래프가 그려진다. \bigcirc $ab < 0 \Leftrightarrow (a > 0$ 이고 b < 0) 또는 (a < 0 이고 b > 0) 이므로

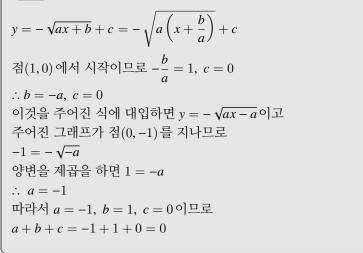
제 2사분면 또는 제 4사분면에 그래프가 그려진다.

© a < 0, b > 0 이면 제 4사분면에 그래프가 그려진다.

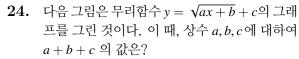
(a) a > 0, b < 0 이면 제 2사분면에 그래프가 그려진다.

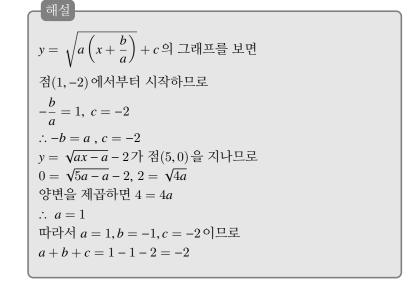
제 3사분면에 그래프가 그려진다.

 $23. \quad y = -\sqrt{ax+b} + c$ 의 그래프의 개형이 아래 그림과 같을 때, a+b+c의 값은?

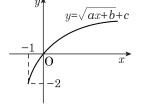


이것을 수어신 식에 대입하면
$$y = -\sqrt{ax - a}$$
이고
주어진 그래프가 점 $(0, -1)$ 를 지나므로
 $-1 = -\sqrt{-a}$
양변을 제곱을 하면 $1 = -a$
∴ $a = -1$
따라서 $a = -1$, $b = 1$, $c = 0$ 이므로
 $a + b + c = -1 + 1 + 0 = 0$





25. 함수 $y = \sqrt{ax+b} + c$ 의 그래프가 다음 그 림과 같을 때, a+b+c 의 값을 구하여라.



▶ 답: ▷ 정답: 6

해설

주어진 그래프에서 $y = \sqrt{ax + b} + c$ 의 그래프는 $y = \sqrt{ax}$ 의 그래프를

x 축의 방향으로 −1 만큼, y 축의 방향으로 −2 만큼

평행이동한 것이므로

 $y = \sqrt{ax + b} + c$ $\Leftrightarrow y = \sqrt{a(x+1)} - 2$

이것이 원점을 지나므로 $0 = \sqrt{a(0+1)} - 2$

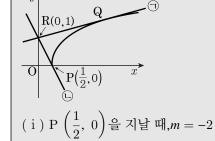
 $\therefore \sqrt{a} = 2 \implies a = 4$ $y = \sqrt{4x + 4} - 2$

 $\therefore a + b + c = 4 + 4 - 2 = 6$

- **26.** 원점을 지나는 직선이 두 함수 $y = \sqrt{x}$, $y = -\sqrt{-x}$ 의 그래프와 서로 다른 세 점에서 만날 때, 세 점의 x좌표의 값의 합을 구하면?
 - ① -2 ② -1 ③ 0 ④ 1 ⑤ 2

두 함수 $y = \sqrt{x}$, $y = -\sqrt{-x}$ 의 그래프는 원점에 대하여 대칭이므로 다음 그림과 같이 원점을 지나는 직선과 서로 다른 세 점에서 만날 때, 세 점의 x 좌표의 값의 합은 항상 0이다.

- **27.** 두 집합 A = { $(x, y) | y = \sqrt{2x-1}$ }, B = {(x, y) | y = mx + 1}에서 $A \cap B \neq \emptyset$ 일 때, m의 값의 범위를 구하면?
 - - ② $-1 \le m \le \sqrt{2} - 1$
 - ③ $-2 \le m \le \sqrt{2} 1$ ④ $-2 \le m \le \sqrt{3} 1$
 - ⑤ $-1 \le m \le \sqrt{3} 1$
 - 그림에서 직선 \bigcirc 이 점 P 를 지날 때부터 \bigcirc 과 점 Q 에서 접할 때까지의 m의 값이 구하는 범위이다.



- (ii) 접할 때는 $\sqrt{2x-1} = mx + 1$ 에서 $m^2x^2 + 2(m-1)x + 2 = 0$
- $\therefore \frac{D}{4} = (m-1)^2 2m^2 = 0$
- $\therefore m = -1 + \sqrt{2} (\because m > 0)$ (i), (ii)에서 $-2 \le m \le \sqrt{2} - 1$

28. 무리함수 $y = -\sqrt{1-x} + 2$ 의 역함수는?

① $y = (x-2)^2 + 1(x \le 2)$ ② $y = (x-2)^2 - 1(x \le 2)$

해설

 $y = -\sqrt{1-x} + 2$ 에서 $1-x \ge 0$ 이므로 $x \le 1$ $y-2=-\sqrt{1-x}\leq 0$ 이므로 $y\leq 2$ $1-x=(y-2)^2$, $x=-(y-2)^2+1$ x, y를 바꾸면 구하는 역함수는 $\therefore y = -(x-2)^2 + 1(x \le 2)$

- 29. 정의역이 $\{x\mid x>1\}$ 인 두 함수 $f(x)=\frac{1}{x+1},\ g(x)=\sqrt{3(x-1)}$ 에 대하여 $(f\circ g)^{-1}\left(\frac{1}{4}\right)$ 의 값은?
 - ① 2 ② 4 ③ 6 ④ 8 ⑤ 10

 $(f \circ g)^{-1} \left(\frac{1}{4}\right) = a \text{ 라 하면}$ $(f \circ g)(a) = \frac{1}{4} \text{이코}$ $f(g(a)) = f(\sqrt{3(a-1)})$ $= \frac{1}{\sqrt{3(a-1)} + 1} \text{이므로}$ $\frac{1}{\sqrt{3(a-1)} + 1} = \frac{1}{4}$ $\sqrt{3(a-1)} + 1 = 4,$ $\sqrt{3(a-1)} = 3$ 3(a-1) = 9, a-1 = 3, a = 4 $\therefore (f \circ g)^{-1} \left(\frac{1}{4}\right) = 4$

30. 역함수가 존재하는 함수 f(x)에 대하여 $f^{-1}(\sqrt{x+a}-1)=x+b, \ f(1)=0$ 일 때, a-b의 값을 구하면?

해설

 $f^{-1}(\sqrt{x+a}-1) = x+b$ 에서 $f(x+b) = \sqrt{x+a}-1$ 이 때, f(1) = 0이므로 위의 식에 x = 1-b를 대입하면 $f(1-b+b) = \sqrt{1-b+a}-1$ $0 = \sqrt{1-b+a}-1$, $\sqrt{a-b+1} = 1$ a-b+1=1 $\therefore a-b=0$

- **31.** < x >= x [x] 라 할 때, $< \sqrt{3 + 2\sqrt{2}} > -\frac{1}{<\sqrt{3 + 2\sqrt{2}}}$ 의 값은?(단, [x]는 x보다 크지 않은 최대 정수이다.)
 - ① $-2\sqrt{2}$ ② -2 ③ -1 ④ 2 ⑤ $2\sqrt{2}$
 - $\sqrt{3+2\sqrt{2}} = \sqrt{(\sqrt{2}+1)^2}$ $= \sqrt{2}+1 = x \text{라 하자.}$ $[x] = 2, < x >= \sqrt{2}-1$ $(준식) = (\sqrt{2}-1) \frac{1}{\sqrt{2}-1}$ $= \sqrt{2}-1 (\sqrt{2}+1) = -2$

32. 다음 등식
$$x = \sqrt{\frac{3}{2} + \sqrt{\frac{3}{2} + \sqrt{\frac{3}{2} + \cdots}}}$$
을 만족하는 x 값을 간단히 한 것은?

$$1 \frac{1 \pm \sqrt{2}}{2}$$

$$\frac{1}{2}$$

①
$$\frac{1 \pm \sqrt{7}}{2}$$
 ② $\frac{3}{2} \pm \sqrt{\frac{3}{2}}$ ③ 1.5
② $\frac{1}{2} \left(1 + \sqrt{7}\right)$ ⑤ $\frac{1}{2} \left(1 + \sqrt{\frac{3}{2}}\right)$

해설
$$x = \sqrt{\frac{3}{2} + \sqrt{\frac{3}{2} + \sqrt{\frac{3}{2} + \sqrt{\frac{3}{2} + \cdots}}}}$$

$$= \sqrt{\frac{3}{2} + x}$$

$$\Rightarrow x^2 = \frac{3}{2} + x$$

$$\Rightarrow x^2 - x - \frac{3}{2} = 0$$

$$x = \frac{1 \pm \sqrt{7}}{2}$$

$$x = \frac{1 + \sqrt{7}}{2} (\because x > 0)$$

33.
$$x = \frac{2a}{1+a^2} \ (a > 1)$$
 일 때, $P = \frac{\sqrt{1+x} - \sqrt{1-x}}{\sqrt{1+x} + \sqrt{1-x}}$ 의 값을 구하면?

a ② a+1 ③ a-1 ④ a^2 ⑤ $\frac{1}{a}$

34. $x = \frac{2}{\sqrt{3}-1}$, $y = \frac{2}{\sqrt{3}+1}$ 일 때, $\frac{1}{\sqrt{1+\frac{x+y}{4}}-\sqrt{1-\frac{x+y}{4}}}$ 의 값을 구하여라.

▶ 답:

▷ 정답: 1

 $x = \frac{2}{\sqrt{3} - 1} = \sqrt{3} + 1$ $y = \frac{2}{\sqrt{3} + 1} = \sqrt{3} - 1, \ x + y = 2\sqrt{3}$ $\sqrt{1 + \frac{x+y}{4}} = \sqrt{1 + \frac{2\sqrt{3}}{4}}$ $= \frac{1}{2} \sqrt{4 + 2\sqrt{3}}$ $=\frac{1}{2}(\sqrt{3}+1)$ $\sqrt{1 - \frac{x + y}{4}} = \sqrt{1 - \frac{2\sqrt{3}}{4}}$ $=\frac{1}{2}\sqrt{4-2\sqrt{3}}$ $=\frac{1}{2}(\sqrt{3}-1)$ 주어진 식에 대입하면 $\frac{1}{\frac{1}{2}(\sqrt{3}+1)-\frac{1}{2}(\sqrt{3}-1)}=\frac{1}{\frac{1}{2}+\frac{1}{2}}=1$ **35.** x, y가 유리수일 때, $[x, y] = \sqrt{2}x + y$ 로 정의하자. 유리수 a, b가 [2a, 2b] + 1 = [b, a] - 2를 만족할 때, a + b의 값은?

① -4 ② -3 ③ -2 ④ -1 ⑤ 0

[2a, 2b] + 1 = $\sqrt{2}(2a) + 2b + 1$ [b, a] - 2 = $\sqrt{2}b + a - 2$ ∴ $(2b+1) + 2a\sqrt{2} = (a-2) + b\sqrt{2}$ $\begin{cases}
2b+1 = a-2 \\
2a = b
\end{cases}$ a = -1, b = -2∴ a+b = -1-2 = -3 36. 자연수 x,y,z에 대하여 $\sqrt{17+x\sqrt{2}}=y+z\sqrt{2}$ 가 성립할 때, x+y+z의 값을 구하면?

17 ② 18 ③ 19 ④ 20 ⑤ 21

 $\sqrt{17+x\sqrt{2}}=y+z\sqrt{2}$ 의 양변을 제곱하면

 $17 + x\sqrt{2} = y^2 + 2z^2 + 2yz\sqrt{2}$ $\therefore y^2 + 2z^2 = 17 \cdots \bigcirc, x = 2yz \cdots \bigcirc$ \bigcirc 에서 z = 1이면 $y = \sqrt{15}$ 이므로 자연수가 아니다.

z=2이면 $y^2=9$ ∴ y=3

x = 12, y = 3, z = 2

z=3이면 $y^2=-1<0$ 이므로 모순

 $\therefore x + y + z = 17$

해설

37. f(x)는 유리수를 계수로 하는 x의 다항식이고, $f(x) = x^2 + ax + b$, $f(\sqrt{7+2\sqrt{12}})=0$ 일 때, a-b의 값은?

1 -5 ② -4 ③ -3 ④ 0 ⑤ 3

해설

 $\sqrt{7+2\sqrt{12}} = \sqrt{4+3+2\sqrt{4\times 3}} = 2+\sqrt{3}$ $\therefore f(\sqrt{7+2\sqrt{12}}) = f(2+\sqrt{3})$

 $= (2 + \sqrt{3})^2 + a(2 + \sqrt{3}) + b$

 $= (7 + 2a + b) + (4 + a)\sqrt{3} = 0$

그런데, 7+2a+b, 4+a는 유리수이므로 무리수의 상등에 관한 정리에서 7 + 2a + b = 0, 4 + a = 0 : a = -4, b = 1

 $\therefore a - b = -4 - 1 = -5$

 $f(\sqrt{7+2\sqrt{12}}) = 0$ 이므로 $\sqrt{7+2\sqrt{12}} = 2+\sqrt{3}$ 은 x^2+ax+

해설

b=0의 한 근이고, a, b가 유리수이므로 다른 한 근은 $2-\sqrt{3}$ 이다. 이차방정식의 근과 계수와의 관계에 의해 두 근의 합 4 = -a, 두 근의 곱 1 = b

 $\therefore a - b = -4 - 1 = -5$

38. 함수 $y = \frac{ax+8}{x+b}$ 의 그래프의 점근선의 방정식이 x = 6, y = -1 일 때, 함수 $y = \sqrt{bx-a}$ 의 정의역에 속하는 정수의 최댓값은? (단, a, b는 상수이다.)

① -2 ② -1 ③ 0 ④ 1 ⑤ 2

 $y = \frac{ax+8}{x+b} = \frac{8-ab}{x+b} + a$ 이고 저그성이 바건성이 x = -b = 6

점근선의 방정식이 x=-b=6, y=a=-1 이므로 a=-1, b=-6 함수 $y=\sqrt{-6x+1}$ 의 정의역은 $\left\{x\,|\,x\leq\frac{1}{6}\right\}$ 이므로 구하는

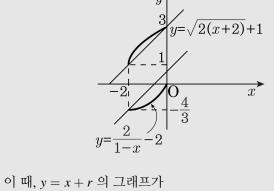
정수의 최댓값은 0 이다.

39. 정의역이 $\{x|-2 \le x \le 0\}$ 인 두 함수 $y=\sqrt{2(x+2)}+1, y=\frac{2}{1-x}-2$ 에 대하여 y=x+r 의 그래프가 $y=\sqrt{2(x+2)}+1$ 의 그래프보다는 아래에 있고 $y = \frac{2}{1-x} - 2$ 의 그래프 보다는 위에 있을 때, r 은 범위가 $r_1 < r < r_2$ 라고 한다. $3r_1 - r_2$ 의 값을 구하면?

② 1 ③ 2 ④ 3 ⑤ 4

 $-2 \le x \le 0$ 에서

 $y = \sqrt{2(x+2)} + 1$ 과 $y = \frac{2}{1-x} - 2$ 의 그래프를 나타내면 다음 그림과 같다.



 $y = \sqrt{2(x+2)} + 1$ 의 그래프보다 아래에 있으므로 r < 3

또한, y = x + r의 그래프가 $y = \frac{2}{1 - x} - 2$ 의 그래프보다

위에 있으므로 $r > \frac{2}{3}$ $\therefore \frac{2}{3} < r < 3$ 따라서 $r_1 = \frac{2}{3}, r_2 = 3$ 이므로

 $\therefore 3r_1 - r_2 = 3 \cdot \frac{2}{3} - 3 = -1$

40. 함수 $f(x) = \begin{cases} 1 - \sqrt{x} & (x \ge 0) \\ \sqrt{2 - x} & (x < 0) \end{cases}$ 에 대하여 $(f \circ f)(k) = 2$ 일 때, 상수 k 의 값을 구하여라.

▶ 답:

▷ 정답: 9

해설

 $(f\circ f)(k)=f(f(k))=2 \text{ odd}$ f(k)=k' 이라 하면 f(k')=2

i) k' ≥ 0 이면

 $y = 1 - \sqrt{x}$ 이고, $y \le 1$ 이므로

함숫값이 2 가 될 수 없다. $\therefore k' < 0$

ii) k' < 0 이므로 $f(k') = \sqrt{2 - k'} = 2$

 $2 - k' = 4 \quad \therefore \quad k' = -2$

f(k) = -2 인 k 의 값을 구하면 된다. iii) k < 0 이면

 $y = \sqrt{2-x} (x < 0)$ 이코, $y > \sqrt{2}$ 이므로 함숫값이 -2 가 될 수 없다.

 $\therefore k \ge 0$ iv) $k \ge 0$ 이므로 $f(k) = 1 - \sqrt{k} = -2$

 $\therefore k = 9$

41. a가 실수일 때, 다음 식이 성립하기 위한 a값의 범위를 구하면?

$$a\sqrt{1-\left(\frac{1}{a}\right)^2} = \sqrt{a^2-1}$$

① a > 0

② $a \ge 1$

⑤ a > 1 또는 a < -1

좌변 = $a\sqrt{\frac{a^2 - (1)^2}{(a)^2}} = \frac{a}{|a|}\sqrt{a^2 - 1}$ $\therefore \frac{a}{|a|}\sqrt{a^2 - 1} = \sqrt{a^2 - 1}$ 에서 $\sqrt{a^2 - 1}(\frac{a}{|a|} - 1) = 0$ 이므로 $\sqrt{a^2 - 1} = 0$ 또는 $\frac{a}{|a|} = 1$ $\therefore a = \pm 1 \,\, \underline{\Xi} \, \underline{\vdash} \, a > 0 \cdots \, \underline{\lnot}$ 한편 근호 안의 값은 양수이므로 $a^2 - 1 \ge 0$ 으로부터 $a \ge 1$ 또는 $a \le -1 \cdots$ \square \therefore ①, ⓒ에서 a=-1 또는 $a\geq 1$

42.
$$x^2 + 6x + 4 = 0$$
의 두 근이 a, b 일 때, $\frac{\sqrt{b}}{\sqrt{a}} + \frac{\sqrt{a}}{\sqrt{b}}$ 의 값은?

-3 ② $-\frac{3}{2}$ ③ -1 ④ $\frac{3}{2}$ ⑤ 3

해설
$$x^{2} + 6x + 4 = 0$$

$$a + b = -6, \ ab = 4 \Rightarrow a < 0, \ b < 0$$

$$\frac{\sqrt{b}}{\sqrt{a}} + \frac{\sqrt{a}}{\sqrt{b}} = \frac{(\sqrt{b})^{2} + (\sqrt{a})^{2}}{\sqrt{a}\sqrt{b}} = \frac{b + a}{-\sqrt{ab}}$$

$$\frac{\sqrt{b}}{\sqrt{a}} + \frac{\sqrt{a}}{\sqrt{b}} = \frac{(\sqrt{b})^2 + (\sqrt{a})^2}{\sqrt{a}\sqrt{b}} = \frac{b+a}{-\sqrt{ab}}$$

$$\frac{-6}{-3}$$

$$\therefore \frac{-6}{-2} = 3$$

43. $a = \sqrt{10 - 8\sqrt{3 - \sqrt{8}}}$ 에 대하여 f(x) = [x], g(x) = x - [x]일 때, $\frac{14}{f(a) + g(a)} - \frac{2}{g(a)}$ 의 값은? (단, [x]는 x보다 크지 않은 최대의 정수 이다.)

1

② $2 + \sqrt{2}$ ③ $\frac{7}{2}$

 $\textcircled{4} \ 4 \qquad \qquad \textcircled{5} \ 5\sqrt{2}$

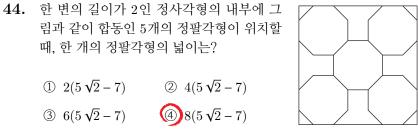
 $a = \sqrt{10 - 8\sqrt{3 - \sqrt{8}}} = \sqrt{10 - 8\sqrt{3 - 2\sqrt{2}}}$

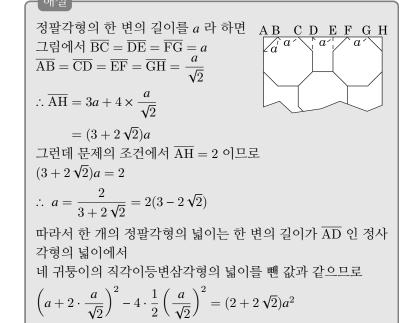
 $= \sqrt{10 - 8(\sqrt{2} - 1)} = \sqrt{18 - 8\sqrt{2}}$ $= \sqrt{18 - 2\sqrt{32}}$ $\therefore a = 4 - \sqrt{2} = 2. \times \times \times$

[a] = 2, f(a) = [a] = 2 $g(a) = a - [a] = 4 - \sqrt{2} - 2 = 2 - \sqrt{2}$

 $\therefore \frac{14}{f(a) + g(a)} - \frac{2}{g(a)} = \frac{14}{4 - \sqrt{2}} - \frac{2}{2 - \sqrt{2}} = 2$

- 림과 같이 합동인 5개의 정팔각형이 위치할 때, 한 개의 정팔각형의 넓이는?
 - ① $2(5\sqrt{2}-7)$ ② $4(5\sqrt{2}-7)$ ③ $6(5\sqrt{2}-7)$ ④ $8(5\sqrt{2}-7)$
 - $\bigcirc 10(5\sqrt{2}-7)$





 $\therefore (2+2\sqrt{2})a^2 = (2+2\sqrt{2})\left\{2(3-2\sqrt{2})\right\}^2$ $=8(5\sqrt{2}-7)$

45. a, b는 실수이고, $a^3 = 26 + 15\sqrt{3}, b^3 = 26 - 15\sqrt{3}$ 일 때, $\frac{\sqrt{a} + \sqrt{b}}{\sqrt{a} - \sqrt{b}}$ 의 값을 구하면?

 $\sqrt{3}$ $\sqrt{3}$

① $-2\sqrt{3}$ ② $-\sqrt{3}$ ③ $2\sqrt{3}$

해설 $a^{3} + b^{3} = (a+b)^{3} - 3ab(a+b) = 52$

 $(ab)^3 = (26 + 15\sqrt{3})(26 - 15\sqrt{3}) = 1$: ab = 1

a+b=t 라 하면

 $t^3 - 3t - 52 = 0$, $(t - 4)(t^2 + 4t + 13) = 0$ a, b 가 실수이므로 t 도 실수이다.

t=4이므로 a+b=4

준식 = $\frac{\left(\sqrt{a} + \sqrt{b}\right)^2}{\left(\sqrt{a} - \sqrt{b}\right)\left(\sqrt{a} + \sqrt{b}\right)}$

a+b=4, ab=1 이므로 a,b 는 $x^2-4x+1=0$ 의 근이고 $a^3 > b^3$ 이므로 a > b

 $a = 2 + \sqrt{3}, \ b = 2 - \sqrt{3}$ $a - b = 2\sqrt{3}$ $\therefore \left(\frac{2}{2} \stackrel{\checkmark}{\sqrt{3}} \right) = \frac{4+2}{2\sqrt{3}} = \sqrt{3}$

46. $x = \sqrt[3]{\sqrt{3}+2} - \sqrt[3]{\sqrt{3}-2}$ 일 때, $x^4 + 2x^3 - 3x^2 - 10x - 4$ 의 값을 구하면?

① 4 ② 3 ③ 2 ④ 1 ⑤ 0

해설

$$x = \sqrt[3]{\sqrt{3} + 2} - \sqrt[3]{\sqrt{3} - 2}$$
에서

$$\sqrt[3]{\sqrt{3} + 2} = a, \sqrt[3]{\sqrt{3} - 2} = b$$
라 하면

$$x = a - b, ab = -1$$

$$x^3 = (a - b)^3$$

$$= a^3 - b^3 - 3ab(a - b)$$

 $= \sqrt{3} + 2 - (\sqrt{3} - 2) + 3x = 4 + 3x$

 $\therefore x^3 - 3x - 4 = 0$

$$\therefore x^4 + 2x^3 - 3x^2 - 10x - 4$$
$$= (x^3 - 3x - 4)(x + 2) + 4$$

$$= 0 + 4 = 4$$

47. $\{(x, y) \mid y = \sqrt{x-3}\} \cap \{(x, y) \mid y = mx+1\} \neq \emptyset$ 인 m의 최댓값을 a, 최솟값을 b라 할 때, a + b의 값을 구하면?

① $-\frac{1}{2}$ ② $-\frac{1}{3}$ ③ $-\frac{1}{5}$ ④ $-\frac{1}{6}$ ⑤ $-\frac{1}{9}$

 $y = \sqrt{x-3} \cdot \cdots \cdot \bigcirc \bigcirc$

 $y = \sqrt{x}$ 를 x축의 방향으로 3만큼 평행이동한 것이다. y = mx + 1 · · · · · · ②의 y 절편은 항상 1이다.

②식이 (3, 0)을 지날 때, $m = -\frac{1}{3} \cdots$ \bigcirc

②식이 ① 식에 접할 때, $\sqrt{x-3} = mx + 1$ 에서 양변 제곱하여 정리하면

 $m^2x^2 + (2m-1)x + 4 = 0$ D = 0 에서 $m = \frac{1}{6}, -\frac{1}{2}$

m > 0이므로 $m = \frac{1}{6}$ ··· ① ①, ⓒ으로부터

 $\begin{array}{c} \bigcirc, \ \bigcirc = \pm \mp \Box \\ -\frac{1}{3} \le m \le \frac{1}{6} \quad \therefore \ a = \frac{1}{6}, \ b = -\frac{1}{3} \\ \therefore \ a + b = -\frac{1}{6} \end{array}$

48. 두 함수 $y = \sqrt{-2x+3}$, $x = \sqrt{-2y+3}$ 의 그래프의 교점의 좌표를 (a, b)라 할 때, a + b의 값은?

① -6 ② -4 ③ -2 ④ 0 ⑤ 2

해설 함수 $y = \sqrt{-2x+3}$ 에서 x와 y를 서 $y = \sqrt{-2x+3}$ 로 바꾸면 $x = \sqrt{-2y + 3}$ 이므로 두 함수는 서로 역함수의 관계에 있다. 따라서, 두 함수 $y = \sqrt{-2x+3}$, $x = \sqrt{-2y + 3}$ 의 그래프는 직선 y = x에 대하여 대칭이다. 즉, 두 함수 $y = \sqrt{-2x+3}$, $x = \sqrt{-2y+3}$ 의 그래프는 아래 그림과 같으므로 두 함수의 그래프의 교점은 함수 $y = \sqrt{-2x+3}$ 의 그래프와 직선 y = x의 교점과 같다. 두 식을 연립한 방정식 $\sqrt{-2x+3} = x$ 의 을 제곱하면, $-2x + 3 = x^2$, $x^2 + 2x - 3 = 0$ (x-1)(x+3) = 0 \therefore x = 1 또는 x = -3그런데 $0 \le x \le \frac{3}{2}$ 이므로 x = 1, y = 1따라서 구하는 교점의 좌표는 (1, 1)이므로 $a=1,\ b=1$ $\therefore a+b=2$

- 49. 세 집합 $A = \{(x,y) \mid y = m(x+1) 1, m \stackrel{\diamond}{\leftarrow} 실수\}$ $B = \{(x,y) \mid y = x \in A\}$ $\left|\frac{1}{x-1}+2\right|,\ x \neq 1인실수$ $C = \{(x,y) \mid y = \sqrt{x-n} + 2, x \geq n$ 인 실수} 에 대하여 $n(A \cap B) = 3$ 이기 위한 m의 범위는 $\bigcirc n(B \cap C) = 2$ 이기 위한 n 의 범위는 \bigcirc 이다. 빈 칸에 들어갈 값으로 알맞게 짝지은 것은?
 - ① $\bigcirc m \ge \frac{1}{2}$ $\bigcirc n \ge 1$ ② $\bigcirc m \ge \frac{3}{2}$ $\bigcirc n < 1$ ③ $\bigcirc m > \frac{3}{2}$ $\bigcirc n \ge \frac{3}{4}$ ⑤ $\bigcirc m \ge \frac{2}{3}$ $\bigcirc n < \frac{3}{4}$ ⑤ $\bigcirc m \ge \frac{2}{3}$ $\bigcirc n < \frac{3}{4}$

 - 해설 ⊙: 그림처럼, ⊙보다 위에 있을 때 교점이 3개 이다. $0=m\left(\frac{1}{2}+1\right)-1 에서 m=\frac{2}{3}$ $\therefore m$ 의 범위는 $m > \frac{2}{3}$ ©: 그림의 ©보다 왼쪽에 있을 때 교점이 2 개이다. y = 2일 때의 교점은 $2 = \left| \frac{1}{x-1} + 2 \right|$ 에서 $\left(\frac{3}{4}, 2\right)$ $\therefore n = \frac{3}{4}$ $\therefore n$ 의 범위는 $n \le \frac{3}{4}$

50. 곡선 $y^2 - 2y + 4x - 3 = 0$ 에 x축 위의 점 (a, 0)으로 부터 그은 두 접선이 직교하도록 a의 값을 정하면?

① -1 ② 0 ③ 1 ④ 2 ⑤ 3

곡선 $y^2 - 2y + 4x - 3 = 0$ 에 접하는 직선의 기울기를 m 이라 하면, 그 접선은 점(a, 0)을 지나므로 y = m(x - a)

이것을 주어진 식에 대입하여 정리하면,

 $(mx - am)^2 - 2(mx - am) + 4x - 3 = 0$ $m^2x^2 - 2(am^2 + m - 2)x + a^2m^2 + 2am - 3 = 0$

 $\frac{D}{4} = (am^2 + m - 2)^2 - m^2(a^2m^2 + 2am - 3) = 0$

정리하면, $(1-a)m^2-m+1=0$

m의 두 근을 α , β 라 하면, 두 접선이 직교하기 위해서는 $\alpha\beta = -1$ 이어야 하므로

 $\alpha\beta = \frac{1}{1-a} = -1$

 $\therefore a = 2$