1. 다음 집합들 중 서로소인 것은?

- ① $A = \{x \mid x = 2n, n \in \text{자연수}\}, B = \{x \mid x = 2n 1, n \in \text{자연수}\}$ ② $A = \{x \mid x = 6m, m \in \text{정수}\}, B = \{x \mid x = 3m, m \in \text{정수}\}$
- ③ $A = \{x \mid x \vdash x^2 \le 4 \text{ 인 정수}\}, B = \{0, 1, 2\}$
- ④ $A = \{x \mid x 는 복소수\}, B = \{x \mid x 는 실수\}$

A 는 짝수의 집합, B 는 홀수의 집합을 나타내기 때문에 서로소인

집합이 된다.

- 두 집합 $A = \{1, \ 2, \ a-1\}$, $B = \{2, \ 3, \ a, \ b\}$ 에 대하여 $A \cap B = \{2, \ 5\}$ **2**. 일 때 a , b 의 값은?
 - ① a = 2, b = 1
- ② a = 3, b = 2
- 3 a = 4, b = 3

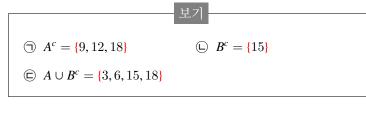
해설

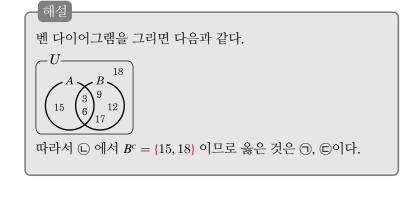
a = 5, b = 4 a = 6, b = 5

 $5 \in A$ 이므로 a - 1 = 5, a = 6

 $5 \in B$ 이므로 b = 5

- **3.** 두 집합 A, B 에 대하여 $A \cup B = A$ 일 때, 다음 중 옳은 것을 모두 고르면? (정답 2개)
- $\bigcirc (A \cap B) \subset A$
- $(A \cap \varnothing) \cup B = A$


$A \cup B = A$ 이면 $B \subset A$ 이다.


해설

① *B* ⊂ *A* 이므로 옳지 않다.

- $(A \cap \emptyset) \cup B = \emptyset \cup B = B$ 이므로 옳지 않다.
- ⑤ $(A \cup B) \subset (A = B)$ 은 $A \subset B$ 와 같으므로 옳지 않다.

4. 전체집합 $U = \{3,6,9,12,15,18\}$ 의 두 부분집합 $A = \{3,6,15\}$, $B = \{3,6,9,12\}$ 에 대하여 다음 보기 중 옳은 것을 모두 고른 것은?

- 전체집합 U의 두 부분집합 A, B에 대하여 다음 중 $(A^c B^c)$ 과 같은 **5.** 집합은? $(단, A^c 은 A 의 여집합이다.)$

 - ① $(A \cup B)^c$ ② $(A \cap B)^c$
- $\textcircled{3}A^c\cap B$
- $\textcircled{4} \ A \cup B \qquad \qquad \textcircled{5} \ A \cap B$

 $(A^c - B^c) = (A^c \cap (B^c)^c) = (A^c \cap B)$

6. 진수는 두 집합의 연산을 이용하여 새로운 집합을 만드는 탐구를 하다가 $A-B=\{1,7\}$ 인 새로운 집합을 만든 원래의 두 집합 A= $\{1,3,5,b\}, B=\{2,a,4,5\}$ 를 발견하였다. 이 때, 원소 a,b 를 찾아 *b* − *a* 의 값은?

① 1

② 2 ③ 3

⑤ 5

 $A-B\subset A$ 이코 $A-B=\{1,7\}$ 이므로 b=7 이다. $A\cap B=\{3,5\}$

이므로 a = 3 이다. 따라서 b - a = 7 - 3 = 4 이다.

- 7. $U = \{x | x = 10$ 보다 작은 자연수 $\}$ 의 두 부분집합 A, B 에 대하여 $A B = \{2, 5, 7\}, A \cap B = \{6, 8\}, A^c \cap B^c = \{1, 3, 4\}$ 일 때, 집합 $B = \{2, 5, 7\}, A \cap B = \{6, 8\}, A^c \cap B^c = \{1, 3, 4\}$ 일 때, 집합 $B = \{2, 5, 7\}, A \cap B = \{6, 8\}, A^c \cap B^c = \{1, 3, 4\}, B =$
- ① $\{6,8\}$ ② $\{6,9\}$ ③ $\{6,7,8\}$
- $\textcircled{4}{6,8,9}$ 5 (6,7,8,9)

 $U = \{1,2,3,4,5,6,7,8,9\} \ , \ (A^c \cap B^c) = (A \cup B)^c = \{1,3,4\}$ 이 므로

따라서 $B = \{6, 8, 9\}$ 이다.

8. 전체집합 $U=\{1,2,3,4,5\}$ 의 두 부분집합 $A=\{2,3,4\}, B=\{1,3,5\}$ 에 대하여 $A\cap B^c$ 은?

① {1} ② {2} ③ {4} ④ {1,2} ⑤ {2,4}

 $A \cap B^c = A - B = \{2, 4\}$ 이다.

해설

- 9. 두 집합 $A = \{1, 2, a^2 2a\}$, $B = \{a 2, a + 1\}$ 가 있다. $A \cap B^c = \{2, 3\}$ 일 때, B A 의 원소의 합을 구하면?
 - ① -3
- ② 3
- (3)
- **4** 5
- ⑤ 6

해설 $A \cap B^c = A - B = \{2, 3\}$ 이므로 집합 A 에서 $a^2 - 2a = 3$ 이다. \therefore

a = -1 or 3 i) a = -1 일 때, 집합 $B = \{-3,0\}$ 이 되어 조건을 만족하지

않는다. ii) a=3이면 집합 $B=\{1,4\}$ 가 되어 조건을 만족한다.이때

- $A = \{1, 2, 3\}$, $B = \{1, 4\}$ $B - A = \{4\}$ of C_1
- $\therefore B A = \{4\}$ 이다.

- **10.** 전체집합 $U=\{2,4,6,8,10,12\}$ 의 부분집합 $A=\{2,6\},B=\{6,8,10\},C=\{6,10,12\}$ 일 때, $(A\cup B)\cap C^c$ 은?
 - ① {2} ② {8} ③ {2,8} ④ {2,8,10} ③ {2,10,12}

해설

 $(A \cup B) \cap C^c = (A \cup B) - C$ = $\{2, 6, 8, 10\} - \{6, 10, 12\}$ = $\{2, 8\}$ 이다.

- **11.** $U = \{1, \ 3, \ 5, \ 7, \ 9\}$, $A = \{1, \ 3, \ 5\}$, $B = \{3, \ 5, \ 9\}$ 일 때, $A \cap B$ 를 포함하는 U 의 부분집합의 개수는?
- ① 2 ② 4 ③ 6
- **4**8
- ⑤ 10

 $U = \{1, 3, 5, 7, 9\}$

해설

 $A = \{1, \ 3, \ 5\} \ , B = \{3, \ 5, \ 9\}$ 이므로 $A \cap B = \{3, 5\}$ 이다.

3, 5 를 포함하는 U 의 부분집합의 개수는 $2^{5-2} = 2^3 = 8 \ ()$

12. 다음 중 옳지 <u>않은</u> 것은?

① $A \cup B = B \cup A$ ③ $(A \cap B) \subset A$

해설

- $② \ A \cup \varnothing = A$
 - ④ $B \subset A$ 이면 $A \cup B = A$
- $\bigcirc B \subset A$ 이면 $A \cap B = A$

③ $(A \cap B) \subset A$, $(A \cap B) \subset B$ ④ $B \subset A$ 이면 $A \cup B = A$ ⑤ $B \subset A$ 이면 $A \cap B = B$

- 13. 두 집합 $A = \{x \mid x \in 8 \text{의 배수}\}$, $B = \{x \mid x \in k \text{의 배수}\}$ 에 대하여 $A \cup B = B$ 인 조건을 만족하는 자연수 k 의 값으로 적당하지 <u>않은</u> 것은?
 - ① 1 ② 2 ③ 4 ④6 ⑤ 8

해설

 $A \cup B = B$ 를 만족하려면 $A \subset B$ 인 관계가 성립하여야 하므로 집합 B 는 집합 A 의 원소인 B 의 배수를 모두 포함하여야 한다.

따라서 k 가 8 의 약수일 때다. 즉 6 의 배수는 8 의 배수 전부를 포함하지 않는다.

- **14.** 전체집합 $U=\{1,\ 2,\ 3,\ 4,\ 5\}$ 의 두 부분집합 $A=\{2,\ 4,\ 5\}$, $B=\{2,\ 3,\ 5\}$ 에 대하여 $(A\cap B)\subset X\subset U$ 를 만족하는 집합 X 의 개수는?
 - ① 1개 ② 2개 ③ 4개 ④8개 ⑤ 16개

 $A\cap B=\{2,\ 5\}$ 이므로, 집합 X 는 원소 2, 5를 포함하는 U=

해설

{1, 2, 3, 4, 5} 의 부분집합이다. 따라서 *X* 의 개수는 *U* 에서 원소 2, 5 를 뺀 {1,3,4} 의 부분집합 의 개수와 같으므로 2×2×2 = 8(개) 이다.

- 15. 전체집합 $U = \{x \mid x \in 9$ 보다 작은 자연수 $\}$ 의 두 부분집합 A = $\{1,\ 2,\ 4,\ 6\}$, $B=\left\{x|x$ 는 짝수 $\right\}$ 에 대하여 $A^c\cap B^c$ 은?

① {1}

- **4** (3, 5, 7) **5** (1, 3, 5, 7)
- ② {1, 5} ③ {1, 3}

해설

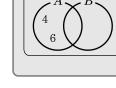
 A^c 과 B^c 을 각각 구한 후, 교집합을 구한다.

 $A^c = U - A, B^c = U - B$ $U = \{1, 2, 3, 4, 5, 6, 7, 8\} , A = \{1, 2, 4, 6\} , B =$

{2, 4, 6, 8} 이므로

 $A^c = \{3, 5, 7, 8\}, B^c = \{1, 3, 5, 7\}$

 $\therefore A^c \cap B^c = \{3, 5, 7\}$


- **16.** 전체집합 $U=\left\{x|x \leftarrow 10 \text{ 이하의 } 2 \text{의 배수}\right\}$ 의 두 부분집합 A,B 에 대하여 $A-B=\{4,6\}$ 이고 $(A\cup B)^c=\{10\}$ 일 때, 집합 B 는?

 - ① {2}
- (3){2,8}
- $\textcircled{4} \{2,6,10\}$ $\textcircled{5} \{2,8,10\}$

$U = \{2, 4, 6, 8, 10\}$ 이므로

주어진 조건을 벤 다이어그램으로 나타내면 다음 그림과 같으므

로 B = {2,8} 이다.

- 17. 전체집합 U와 두 부분집합 A, B에 대하여 $U = A \cup B, A = \{x \mid x 는 3 의 배수\}, B = \{x \mid x 는 45 의 약수\} 일 때, (A \cup B^c) \cap (A^c \cup B) 의 원소의 개수는?$
 - ① 1 ② 2 ③ 3 ④ 4 ⑤ 5

 $A = \{3, 6, 9, 12, 15, 18, \dots\}$ $B = \{1, 3, 5, 9, 15, 45\}$

 $A \cap B = \{3, 9, 15, 45\}$

해설

- **18.** 전체집합 U 의 두 부분집합 A, B 에 대하여 $A^c \subset B^C$ 일 때, 다음 중 옳은 것은?

 $A^C \subset B^C$ 이므로 $B \subset A$ 이다.

- $(A \cup B) B = A B$

19. 자연수의 집합 N에서 자연수 k의 배수의 집합을 N_k 로 나타낼 때, $(N_{18} \cup N_{12}) \subset N_k$ 를 만족하는 k의 최댓값을 구하라.

답:

▷ 정답: 6

 $N_{18} \cup N_{12}$

해설

 $= \{18, 36, 54, 72, \cdots\}$ $\cup \{12, 24, 36, 48, 60, 72, \cdots\}$

= {12, 18, 24, 36, 48, 54, 60, ···} ⊂ N_k ∴ k의 최댓값은 6

- **20.** 전체집합 $U = \{x \mid x \in 8 \text{ 이하의 자연수}\}$ 의 두 부분집합 $A = \{x \mid x \in 6 \text{의 약수}\}$, $B = \{2, 3, 5, 8\}$ 에 대하여 다음 중 옳지 <u>않은</u> 것은?
 - ① $n(A \cap B) = 2$ ③ n(A - B) = 2

 $U = \{1, 2, 3, 4, 5, 6, 7, 8\}, A = \{1, 2, 3, 6\}, B = \{2, 3, 5, 8\}$ 이므로

해설

④ $n(B \cap A^c) = 2$ 이다.

21. 두 집합 A, B 에 대하여 $n(A)=29, \ n(B)=32, \ n(A\cup B)=46$ 일 때, n(A-B) 를 구하여라.

답:

➢ 정답: 14

해설

 $n(A \cup B) = n(A) + n(B) - n(A \cap B)$ $46 = 29 + 32 - n(A \cap B)$

 $n(A \cap B) = 15$

$$= 29 - 15$$

= 14

 $n(A-B) = n(A) - n(A \cap B)$

22. 어느 마을에서 개나리신문을 보는 가구는 25 가구, 진달래신문을 보는 가구는 16 가구, 개나리와 진달래 신문 모두를 보는 가구는 5 가구이다. 개나리와 진달래신문 중 하나의 신문만 보는 가구의 수는?

- ① 31 가구 ② 32 가구 ③ 33 가구

④ 34 가구 ⑤ 35 가구

 $n(A) = 25, n(B) = 16, n(A \cap B) = 5$ $n(A \cup B) = n(A) + n(B) - n(A \cap B) = 25 + 16 - 5 = 36$ 이다.

 $n((A-B) \cup (B-A)) = n(A \cup B) - n(A \cap B) = 36 - 5 = 31$ 이다.

- 23. 우리 반 학생 중에서 형이 있는 학생이 15 명, 누나가 있는 학생이 10 명이고, 형과 누나가 모두 있는 학생이 5 명이다. 형이나 누나가 있는 학생의 수는?
 - ① 10명 ② 12명 ③ 15명 ④ 17명 ⑤ 20명

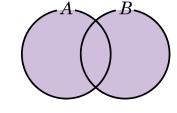
형이 있는 학생을 A 라 하면 n(A) = 15누나가 있는 학생을 B 라 하면 n(B) = 10

해설

형과 누나가 모두 있는 학생은 $A \cap B$ 이므로 $n(A \cap B) = 5$

형이나 누나가 있는 학생은 $A \cup B$ 이다. $\therefore n(A \cup B) = n(A) + n(B) - n(A \cap B)$

= 15 + 10 - 5 = 20


따라서 형이나 누나가 있는 학생은 모두 20 명이다.

24. 세 집합 A, B, C 에 대하여 n(A) = 11, n(B) = 13, n(C) = 10, $n(A \cap B) = 4$, $n(B \cup C) = 17$, $A \cap C = \emptyset$ 일 때, $A \cup B \cup C$ 의 원소의 개수는?

① 12 ② 17 ③ 24 ④ 30 ⑤ 34

해설 주어진 조건을 벤 다이어그램으로 나타내면 다음과 같다. $A(11) \longrightarrow B(13) \longrightarrow C(10)$ $7 \longrightarrow 4 \longrightarrow 3 \longrightarrow 6 \longrightarrow 4$ $\therefore n(A \cup B \cup C) = 24$

25. 두 집합 *A* = {1, 2, 4, 8, 16, 24}, *B* = {4 × *x* | *x* ∈ *A*} 에 대하여 다음 벤 다이어그램의 색칠한 부분을 나타내는 집합의 원소의 최댓값을 구하여라.

답:▷ 정답: 96

$B = \{4 \times x \mid x \in A\}$ 는 집합 A 의 원소를 x 에 대입한 수들의

해설

집합이다. 원소나열법으로 고쳐보면, B = {4, 8, 16, 32, 64, 96} 이 된다.

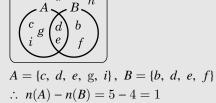
B = {4, 8, 16, 32, 64, 96} 이 된다. 색칠한 부분의 원소는 {1, 2, 4, 8, 16, 24, 32, 64, 96} 이다.

이때, 가장 큰 원소는 96 이다.

. 두 집합 A, B에 대하여 다음 중 옳지 않은 것을 고르면?

- $A \cup B = B \cup A$ ② $B \subset A$ 이면 $A \cap B = B$

해설


 ${f 27}$. 전체집합 U 의 두 부분집합 $A,\ B$ 가 다음을 만족할 때, n(A)-n(B) 의 값을 구하여라.

 $A \cup B = \{b, c, d, e, f, g, i\}$ $A^c \cap B = \{b, f\}$ $A^c \cup B^c = \{a, b, c, f, g, h, i\}$

▶ 답: ▷ 정답: 1

해설

주어진 조건을 벤 다이어그램에 나타내면 다음과 같다. \overline{a}

28. 두 집합 A, B가 다음과 같을 때, $(A - B) \cup X = X$, $(A \cup B) \cap X = X$ 를 만족하는 집합 X의 개수는?

A = {x | x는 8의 약수}, B = {x | x는 5이하의 홀수}

① 2 개 ② 4 개 ③ 6 개 ④ 8 개 ⑤ 10 개

 $(A-B)\cap X=X$ 이므로 $(A-B)\subset X$ $(A\cup B)\cap X=X$ 이므로 $X\subset (A\cup B)$

 {2,4,8} ⊂ X ⊂ {1,2,3,4,5,8}

 집합 X는 집합 A ∪ B의 부분집합 중 원소 2, 4, 8을 반드시

 포함하는 집합이다.

 ∴ 2⁶⁻³ = 2³ = 8(개)

해설

- **29.** 전체집합 $U = \{x | x \vdash 8 \text{ 이하의 자연수}\}$ 의 세 부분집합 $A = \{x | x \vdash 8 \text{ 이하의 홀수}\}$, $B = \{1, 2, 3, 6\}$, $C = \{1, 5\}$ 가 있다. 전체집합 U 의 두 부분집합 X, Y 에 대하여 $X \circ Y = (X \cup Y) \cap (X^c \cup Y^c)$ 이라 할 때, $(A \circ B) \circ C$ 는?
 - ① {1,3} ② {1,5} ③ {1,7}
 - $\textcircled{4} \{1, 2, 5\}$ $\textcircled{5} \{1, 2, 6, 7\}$

 $U = \{1, 2, 3, 4, 5, 6, 7, 8\}, A = \{1, 3, 5, 7\}$ 이다.

해설

 $X\circ Y=(X\cup Y)\cap (X^c\cup Y^c)=(X\cup Y)-(X\cap Y)$ 이므로 $A\circ B=\{1,2,3,5,6,7\}-\{1,3\}=\{2,5,6,7\}$ 이다. 따라서 $(A\circ B)\circ C=\{1,2,5,6,7\}-\{5\}=\{1,2,6,7\}$ 이다.

- - ① 5 ② 6 ③ 7 ④ 8 ⑤

 $A \star B = (A - B) \cup (B - A) = \{1, 2, 4\}$ $\{1, 2, 4\} \star C = (\{1, 2, 4\} - C) \cup (C - \{1, 2, 4\})$ $= \{4, 5\}$ $\therefore (A \star B) \star C = \{4, 5\}$

해설

31. 전체집합 $U = \{1, 2, 3, 4\}$ 의 두 부분집합이 A, B 일 때, 다음 각 조건을 만족하는 집합의 순서쌍 (A, B) 의 개수를 구하여라.

 $(1) A \cap B = \emptyset$ $(2) A \cup B = U$

 ▶ 답:
 개

 ▷ 정답:
 16 개

해설

 $A\cap B=\varnothing$ 이고 $A\cup B=U$ 이면 n(A)+n(B)=n(U)=4 $n(A)=0,\ n(B)=4$ 인 경우:1 개

n(A) = 1, n(B) = 3 인경우: 4개

n(A) = 2, n(B) = 2 인 경우: 6 개 n(A) = 3, n(B) = 1 인 경우: 4 개

n(A) = 4, n(B) = 1 년 경우: 1 개

따라서 순서쌍 (A, B) 의 개수는 1+4+6+4+1=16 (개)

32. 1 에서 100 까지의 자연수 중에서 A ={x | x는 2의 배수}, B = {x | x는 3의 배수}, C = {x | x는 5의 배수} 일 때, 다음 벤 다이어그램에 색 칠된 부분에 속하는 원소의 개수를 구하여라.

개

▷ 정답: 23<u>개</u>

답:

색칠된 부분 ①, ②, ③ 의 원소의 개수를 a, b, c

라 하면 $a = n(A \cap B) - n(A \cap B \cap C) \cdots$ ①, $b = n(B \cap C) - n(A \cap B \cap C) \cdots \bigcirc,$ $c = n(C \cap A) - n(A \cap B \cap C) \cdots \bigcirc$ $A \cap B = \{x \mid x \succeq 6$ 의 배수} $\therefore n(A \cap B) = 16$, $B \cap C = \{x \mid x = 15 의 배수\} : n(B \cap C) = 6$ $C \cap A = \{x \mid x 는 10의 배수\} :: n(C \cap A) = 10$

 $A \cap B \cap C = \{x \mid x = 30$ 의 배수} $\therefore n(A \cap B \cap C) = 3$

a+b+c $= n(A \cap B) + n(B \cap C) + n(C \cap A) - 3 \times n(A \cap B \cap C)$

= 16 + 6 + 10 - 9 = 23

①, ⓒ, ⓒ 에 의해

- **33.** 실수 전체의 집합 R에서 정의된 함수 y = f(x)가 있다. R의 부 분집합 S 에 대하여 $f'(S) = \{y \mid y = f(x), x \in S\}$ 라 정의한다. $A=\{x\mid -1\leq x\leq 3\}$, $B=\{x\mid -1\leq x\leq 2\}$, $f(x)=x^2$ 일 때, $f(A\cap B)$ 를 f(A)와 f(B)로 나타내면?

 - ① f(A) f(B) ② f(B) f(A) ③ $f(A) \cup f(B)$ $(4) f(A) \cap f(B)$ $(5) \{f(A) \cup f(B)\}^c$

해설

i) $A \cap B = \{x \mid -1 \le x \le 2\}$ 이므로

- $f(A \cap B) = \{y | 0 \le y \le 4\}$ ii) $f(A) = \{y \mid 0 \le y \le 9\}$, $f(B) = \{y \mid 0 \le y \le 4\}$ 이므로
- $f(A) \cap f(B) = \{ y \mid 0 \le y \le 4 \}$ $\therefore f(A \cap B) = f(A) \cap f(B)$