1. $(1+i)x^2 + (1-i)x - 6 - 2i$ 가 순허수가 되는 실수 x 의 값을 구하면?

① -3 ② -2 ③ -1 ④ 2 ⑤ 3

2. 실수 x, y에 대하여, 등식 2x + y + (x - 3y)i = 3 + 2i가 성립할 때, $\frac{x}{y}$ 의 값을 구하면?

① $-\frac{1}{11}$ ② 11 ③ 7 ④ -7 ⑤ -11

- **3.** 두 복소수 $z_1=1+(a-2)i$, $z_2=(b-2)-ai$ 에 대하여 $z_1+(2-4i)=z_2$ 가 성립할 때, 실수 a, b 의 합 a+b의 값을 구하여라.
 - **)** 답: a + b = _____

4. $i + i^3 + i^5 + i^7 + \dots + i^{101} = a + bi$ 일 때, a + b 의 값은? (단, a, b는 실수)

① 0 ② 1 ③ 2 ④ 3 ⑤ 4

5. $z = \frac{2}{1-i}$ 일 때, $2z^2 - 4z - 1$ 의 값을 구하면?

① -1 ② 2 ③ -3 ④ 4 ⑤ -5

임의의 두 복소수 $a,\ b$ 에 대하여 연산 \oplus 를 $a\oplus b=ab-(a+b)$ 로 6. 정의한다. $Z = \frac{5}{2-i}$ 일 때, $Z \oplus \overline{Z}$ 의 값은?

① 1 ② 1+2i ③ 1-2i4 -1 5 2 - 2i

7. 두 복소수 $z_1=a+(3b-1)i$, $z_2=(b+1)-5i$ 에 대하여 $z_1=\bar{z}_2$ 가 성립할 때, 실수 a,b에 대하여 a+b의 값은?

① 3 ② 4 ③ 5 ④ 6 ⑤ 7

8. 제곱해서 5 - 12i 가 되는 복소수는?

① $\pm (2 + 3i)$ (4) $\pm(3+3i)$

② $\pm (2-3i)$ ③ $\pm (3-2i)$

⑤ $\pm (3+3i)$

9. x = -2 - i 일 때, $x^2 + 4x + 10$ 의 값을 구하시오.

▶ 답: _____

10. 실수
$$x$$
 에 대하여, $\frac{\sqrt{x+1}}{\sqrt{x-2}} = -\sqrt{\frac{x+1}{x-2}}$ 이 성립할 때, $|x+1| + |x-2|$ 의 값을 구하면? (단, $(x+1)(x-2) \neq 0$)

① 2x-1 ② -2x+1 ③ 3 $\textcircled{4} -3 \qquad \qquad \textcircled{5} x+1$

11. 복소수 z = a + bi (a, b 는 실수)를 실수의 순서쌍 하수 (a, b)로 나타내어 좌표평면 위에 표시할 수 있다. 예를 들어 3+4i를 (3, 4)로 나타내면 다음 그림과 같이 표시할 수 있다. z = 1 + i일 때, 0, z, z² 이 나타내는 점을 각각 A, B, C 라 할 때, △ABC는 어떤 삼각형인가? (단, 가장 정확하게 표시한 것을 하나만 고른다.)

③ 직각삼각형 ⑤ 다 어 º ④ 직각이등변삼각형

② 이등변삼각형

⑤ 답 없음

① 정삼각형

12. $\sqrt{-x^2(x^2-1)^2}$ 이 실수가 되는 서로 다른 실수 x들의 총합은?

① -1 ② 0 ③ 1 ④ 2 ⑤ 3

13. 임의의 두 실수 x, y에 대하여 (x+yi)(1+2i)+(xi-y)(-1-i)-(y+i)가 실수일 때, 좌표평면에서 점 (x, y)로 표현되는 도형과 x축, y축으로 둘러싸인 부분의 넓이를 구하면? ① 2 ② 1 ③ $\frac{1}{2}$ ④ $\frac{1}{4}$ ⑤ $\frac{1}{6}$

14. 복소수 $z=(1+i)x^2+x-(2+i)$ 가 0이 아닌 실수가 되도록 실수 x 의 값을 구하면? (단, $i=\sqrt{-1}$)

① -1 ② 1 ③ 1 ④ 2 ⑤ 2

15. 복소수 (1 - xi)(1 - i)가 순허수가 되도록 실수 x의 값을 정하여라.

) 답: x = _____

16. $(i-1)x^2 - 3(a+i)x + (5+2i) = 0$ 이 실근을 갖도록 하는 실수 a의 값을 α , β 라 할 때, $\alpha - \beta$ 의 값을 구하면 $(\alpha > \beta)$?

① $\frac{7}{6}$ ② $\frac{4}{3}$ ③ $\frac{3}{2}$ ④ $\frac{5}{3}$ ⑤ $\frac{11}{6}$

17. $(1+i)^6 - (1-i)^6$ 을 간단히 하면? (단, $i = \sqrt{-1}$)

① 16 ② -16 ③ 16*i* ④ -16*i* ⑤ 0

18.
$$f(x) = \left(\frac{1+x}{1-x}\right)^{1998}$$
일 때, $f\left(\frac{1-i}{1+i}\right) + f\left(\frac{1+i}{1-i}\right)$ 의 값은?

① 0 ② i ③ -2i ④ -1 ⑤ -2

19. $\left(\frac{1+i}{\sqrt{2}}\right)^{200} + \left(\frac{1-i}{\sqrt{2}}\right)^{200}$ 을 간단히 하면?

① 1 ② 2 ③ 3 ④ -2 ⑤ -4

20. 다음 계산을 하시오.

$$1 + \frac{1}{i} + \frac{1}{i^2} + \frac{1}{i^3} + \dots + \frac{1}{i^{2006}}$$

답: ____

21. $1+i+i^2+i^3+\cdots+i^{2005}=x+yi$ 일 때, x+y의 값은? (단, x,y는 실수 $i = \sqrt{-1}$)

① 1 ② 2 ③ 0 ④ -1 ⑤ -2

22. n 이 자연수일 때, $\left(\frac{1-i}{1+i}\right)^{4n+2} + \left(\frac{1+i}{1-i}\right)^{4n}$ 의 값은?

① -2 ② -2i ③ 0 ④ 2 ⑤ 2i

24. $i(x+i)^3$ 이 실수일 때, 실수 x의 값으로 옳지 않은 것을 <u>모두</u> 고르면?

① 0 ② $\sqrt{3}$ ③ $-\sqrt{3}$ ④ 1 ⑤ -1

25. x에 관한 이차방정식 $a(1-i)x^2+(3+2ai)x+(2a+3i)=0$ 이 실근을 갖기 위한 실수 a의 값을 구하면?

① 1 ② -1 ③ 2 ④ -2 ⑤ 3

① I

-1

(4) -2

(5) 3

26. $\alpha=a+bi$ $(a, b는 실수, i=\sqrt{-1})$ 일 때, $\alpha^t=b+ai$ 라 한다. $lpha=rac{\sqrt{3}+i}{2}$ 일 때, $2lpha^5(lpha^t)^4$ 을 간단히 하면?

- - (4) 2-i (5) $\sqrt{3}+i$
- ① 1+i ② 1-i ③ 2+i

27. 복소수들 사이의 연산 *가 다음과 같다고 하자. $\alpha*\beta=\alpha+\beta+\alpha\beta i$ 이 때, (1+2i)*z=1을 만족시키는 복소수 z는?(단, $i=\sqrt{-1}$)

① 1+i ② 1-i ③ -1+i

④ −1 − i⑤ i

- **28.** 복소수 $z=a+bi,\ w=b+ai\ (a,\ b\colone{b}\colone{b}\colone{c}$ 대하여 다음 중 옳지 않은 것은? (단, \bar{z} , \bar{w} 는 각각 z, w 의 켤레복소 수이다.)
 - ① $i\overline{z} = w$ $3 z \cdot \overline{w} = \overline{z} \cdot w$
- $\begin{array}{ll}
 \boxed{2} & \frac{\overline{w}}{\overline{z}} = \frac{z}{w} \\
 \boxed{4} & z \cdot \overline{z} = w \cdot \overline{w}
 \end{array}$

29. $x^2 - x + 1 = 0$ 의 한 근을 z라 한다. $p = \frac{1+z}{3-z}$ 일 때, $7p \cdot \overline{p}$ 의 값을 구하면?

① 5 ② 4 ③ 3 ④ 2 ⑤ 1

30. $\alpha = \frac{-1 + \sqrt{3}i}{2}$ 일 때, 다음 보기 중 옳은 것을 <u>모두</u> 고른 것은? (단, \bar{z} 는 z 의 켤레복소수)

- ① $\alpha^2 + \alpha + 1 = 0$ ② $1 + \alpha + \alpha^2 + \dots + \alpha^{15} = 1$ © $z = \frac{\alpha + 3}{2\alpha + 1}$ 일 때, $z\overline{z} = \frac{7}{3}$

① ① ② ① , © ③ ① , © ④ © , © ⑤ ① , © , ©

f(10)+f(11)+f(12)+f(13)의 값은? (단, n은 자연수이고 $i=\sqrt{-1}$ 이다.)

31. $A(n) = i^n + (-1)^n n$, $f(n) = A(1) + A(2) + \cdots + A(n)$ 이라 할 때,

① 2i - 2④ 2i + 4

② 2i + 2③ 4i - 2 3 2i - 4

9 41 2

32. 복소수 α 의 실수부가 양이고, $\alpha^3=\frac{1+i}{1-i}$ 일 때, $\alpha+\frac{1}{\alpha}$ 의 값은? (단, $i=\sqrt{-1}$)

- ① $\sqrt{2}$ ② $\sqrt{3}$ ③ 2 ④ $\sqrt{5}$ ⑤ $\sqrt{6}$

33. 실수 $x_1, x_2, x_3, \cdots, x_9$ 가 $16 + x_1 \times x_2 \times \cdots \times x_9 = 0$ 을 만족할 때, $\sqrt{x_1} \times \sqrt{x_2} \times \cdots \times \sqrt{x_9}$ 의 값들의 곱을 구하면?

① 8

② 16 ③ 24 ④ 36 ⑤ 14