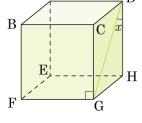

1. 다음 그림과 같은 직각삼각형 ABC 에서  $\tan C = \frac{5}{12}$  이고,  $\overline{BC}$  가  $4\mathrm{cm}$  일 때,  $\overline{\mathrm{AB}}$ 의 길이를 구하여라.




▶ 답:

 $\underline{\mathrm{cm}}$ 

ightharpoonup 정답:  $rac{5}{3} 
m cm$ 

 $\tan C = \frac{\overline{AB}}{\overline{BC}} = \frac{\overline{AB}}{4} = \frac{5}{12}$  이므로  $4 \times 5 = 12 \times \overline{AB}$  이다. 따라서  $\overline{AB} = \frac{5}{3}$ cm 이다.

2. 다음 그림과 같은 한 변의 길이가 2 인 정육면체에서  $\angle GDH$  가 x 일 때,  $\cos x$  의 값이  $\frac{\sqrt{a}}{b}$ 이다. 이때, a+b의 값을 구하시  $B \in \mathbb{C}$  오.(단, a, b는 유리수)



 ■ 답:

 □ 정답:
 4

 $\overline{\mathrm{DG}} = 2\sqrt{2}$ 

DH = 2 이므로 2

따라서 a+b=4 이다.

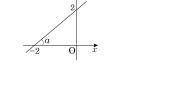
3. 반지름의 길이가 6 인 원에 내접하는 다음 그림과 같은 삼각형 ABC 에서  $\sin A$  의 값 이  $\frac{a}{b}$  일 때, a+b 의 값을 구하여라. (단, a, b 는 서로소)

▶ 답: ▷ 정답: 3

 $\angle B$  는 지름의 원주각  $\angle B = 90^{\circ}$   $\overline{BC} = \sqrt{12^2 - (6\sqrt{3})^2} = 6$ 

 $\therefore \sin A = \frac{6}{12} = \frac{1}{2}$  이므로 a+b=3 이다.

### 다음 중 옳지 <u>않은</u> 것은? **4.**


- $3 \cos 0^{\circ} = 1, \cos 90^{\circ} = 0$
- ①  $\sin 0^{\circ} = 0$ ,  $\sin 90^{\circ} = 1$  ②  $\sin 60^{\circ} = \cos 30^{\circ} = \frac{1}{2}$  $4 \tan 0^{\circ} = 0, \tan 45^{\circ} = 1$

②  $\sin 30^{\circ} = \cos 60^{\circ} = \frac{1}{2}$ ,  $\sin 60^{\circ} = \cos 30^{\circ} = \frac{\sqrt{3}}{2}$ 

- **5.** 경사면의 기울어진 정도를 나타내는 경사도는 수평거리와 수직거리의 비율에 의해 결정된다. 다음 중 경사도와 가장 관계가 깊은 것은?
  - $\bigcirc$  sin A  $\underbrace{1}{\sin A}$
- 3 tan A

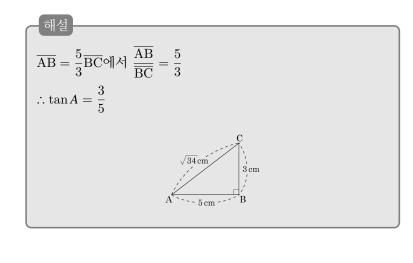
비율로 생각할 수 있으므로  $\tan A$  와 가장 관계가 깊다.

해설 수평거리와 수직거리의 비율은 직각삼각형에서 밑변과 높이의 **6.** 다음 그래프를 보고 직선의 기울기의 값을 x, a 의 크기를  $y^{\circ}$  라 할 때, x + y 의 값을 구하면?



① 16 ② 31 ③ 46 ④ 61 ⑤ 91

(직선의 기울기)  $=\frac{2}{2}=1$  $\tan a = 1$ 


 $\therefore a = 45^{\circ}$ 

따라서 x + y = 1 + 45 = 46 이다.

7.  $\angle B=90^\circ$  인 직각삼각형 ABC 에 대해서  $\overline{AB}=\frac{5}{3}\overline{BC}$  일 때,  $\tan A$  의 값을 구하여라.

▶ 답:

ightharpoonup 정답:  $rac{3}{5}$ 



- 8.  $\sqrt{(\cos A 1)^2} \sqrt{(1 + \cos A)^2}$  의 값은? (단,  $0^\circ < A \le 90^\circ$ )
  - $\bigcirc \cos A$

① 1

- ② 2
- $\Im \cos A$
- $\bigcirc$   $-2\cos A$

 $0 \le \cos A < 1$  이므로

해설

 $(\frac{2}{1}$ 시) =  $-(\cos A - 1) - (1 + \cos A) = -2\cos A$ 

- 9. 이차방정식  $x^2-3=0$  을 만족하는 x 의 값이  $\tan A$  의 값과 같을 때,  $\sin A\cos A$  의 값은? (단,  $0^\circ < A < 90^\circ$ )
  - ①  $\frac{1}{2}$  ②  $\frac{\sqrt{3}}{2}$  ③  $\frac{1}{4}$  ④  $\frac{\sqrt{3}}{4}$  ⑤  $\frac{3\sqrt{3}}{4}$

해설\_\_\_\_\_

 $x^{2} - 3 = 0$  of A  $x^{2} = 3$ ,  $\therefore x = \sqrt{3} \ (\because x > 0)$  $\tan A = \sqrt{3}$ ,  $\therefore A = 60^{\circ} \ (\because 0^{\circ} < A < 90^{\circ})$ 

 $\tan A = \sqrt{3}, : A = 60^{\circ} (: 0^{\circ} < A < 90^{\circ})$   $\sin A \cos A = \sin 60^{\circ} \times \cos 60^{\circ} = \frac{\sqrt{3}}{2} \times \frac{1}{2} = \frac{\sqrt{3}}{4}$ 

2 2 4

**10.** 다음 주어진 표를 보고 x + y 의 값을 구하면?

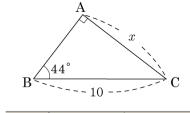
| 각노   | sin    | cos    | tan    |
|------|--------|--------|--------|
| ÷    | i      | :      | :      |
| 14°  | 0.2419 | 0.9703 | 0.2493 |
| 15 ° | 0.2588 | 0,9859 | 0.2679 |
| 16°  | 0.2766 | 0.9613 | 0.2867 |
| :    | :      | :      | :      |

 $\sin x = 0.2766$ ,  $\tan y = 0.2493$ 

① 28°

해설

② 29°


③30°

④ 31° ⑤ 32°

 $\sin x = 0.2766 \therefore x = 16^{\circ}$ 

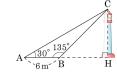
 $\tan y = 0.2493 :: y = 14^{\circ}$  $\therefore x + y = 16^{\circ} + 14^{\circ} = 30^{\circ}$ 

## **11.** 다음 삼각비의 표를 보고 $\triangle$ ABC 에서 x 의 값을 구하면?



| 각도 | sin    | cos    | tan    |
|----|--------|--------|--------|
| 44 | 0.6947 | 0.7193 | 0.9657 |
| 45 | 0.7071 | 0.7071 | 1.0000 |
| 46 | 0.7193 | 0.6947 | 1.0355 |
|    |        |        |        |

① 1.022 ② 6.947 ③ 7.071 ④ 9.567 ⑤ 10.355


 $x = 10 \times \sin 44^\circ = 10 \times 0.6947 = 6.947$ 

- 12. 다음 그림과 같이 바다를 항해하는 배와 등대 사이의 거리가 21 m 이고, 배에서 등대의 꼭대기를 바라 본 각의 크기가 15° 이었다면, 등대의 높이는?

  - ①  $\tan 15\,^{\circ}\,\mathrm{m}$  $4 21 \sin 15$ ° m
- ② 21 tan 15 ° m ③ sin 15 ° m  $\odot \cos 15$ ° m

 $\tan 15$ ° =  $\frac{x}{21}$  이므로  $x = 21 \tan 15$ ° m 이다.

13. 다음 그림은 등대의 높이를 알아보기 위해 측정한 결과이다. 등대의 높이는?



- ①  $(3 \sqrt{3})$ m  $(4\sqrt{3}+1)$ m
- ②  $(3\sqrt{3}-3)$ m ③  $(4\sqrt{3}-1)$ m  $(3\sqrt{3}+3)$ m

해설

등대의 높이를 *h* 라 하면  $\angle \text{CBH} = 45^{\circ}$ 이므로  $\overline{\text{BH}} = h$ ∠CAH = 30° 이므로

 $6+h: h=\sqrt{3}:1, \sqrt{3}h=6+h$  $(\sqrt{3}-1)h=6$ 

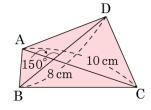
 $\therefore h = \frac{6}{\sqrt{3} - 1} = 3(\sqrt{3} + 1) = 3\sqrt{3} + 3(m)$ 

14. 다음 그림과 같은  $\triangle ABC$  에서  $\overline{AC}=18$ ,  $\overline{\mathrm{BC}}=12$  이고, 넓이가 54 일 때,  $\angle\mathrm{C}$  의 크기는? (단, 90°< ∠C ≤ 180°)

① 95°

② 100°

⑤150° ④ 135°


두 변의 길이가 a, b 이고 그 끼인 각 x 가 둔각이면, 삼각형의 넓이  $S = \frac{1}{2}ab\sin(180\,^{\circ} - x)$ 

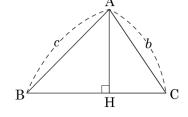
③ 120°

 $\frac{1}{2}\times12\times18\times\sin(180\,^{\circ}-\angle\mathrm{C})=54~,$  $\sin(180\,^{\circ} - \angle C) = \frac{1}{2} = \sin 30\,^{\circ}$ 

따라서 ∠C = 150°이다.

**15.** 다음 그림에서 □ABCD 의 넓이를 구하여 빈 칸을 채워 넣어라.




(사각형 ABCD의 넓이) = ( ) cm²

▶ 답:

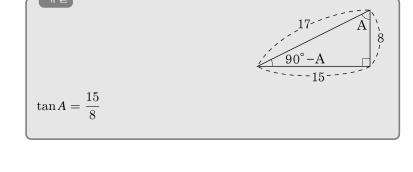
▷ 정답: 20

(사각형의 넓이) = 대각선×대각선× $\frac{1}{2}$ × $\sin\theta$  따라서  $8 \times 10 \times \frac{1}{2}$ × $\sin 30$ ° = 20( $\cos^2$ ) 이다.

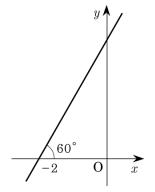
### 16. 다음 중 그림의 $\triangle ABC$ 에서 $\overline{BC}$ 의 길이를 나타내는 것은?



- ①  $c \sin B + b \sin C$
- ②  $c \sin B + b \cos C$
- $\Im c \tan B + b \tan C$


 $\triangle ABH$  에서  $\cos B = \frac{\overline{BH}}{c}, \overline{BH} = c \cos B$  $\triangle$ AHC 에서  $\cos \mathbf{C} = \frac{\overline{\mathbf{CH}}}{b}, \overline{\mathbf{CH}} = b \cos \mathbf{C}$ 

따라서  $\overline{\mathrm{BC}} = \overline{\mathrm{BH}} + \overline{\mathrm{CH}} = c \cos \mathrm{B} + b \cos \mathrm{C}$ 이다.


17.  $\sin(90\,^{\circ}-A) = \frac{8}{17}$ 일 때,  $\tan A$ 의 값을 구하여라. (단,  $(0\,^{\circ} < A < 90\,^{\circ})$ 

답:

ightharpoonup 정답:  $rac{15}{8}$ 



18. 다음 그림과 같이 x 절편이 -2 이고 x 축의 양의 방향과 이루는 각이 60°인 직선을 그래프로 하는 일차함수의 식을 구하여라.



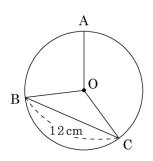
# 답:

 $\triangleright$  정답:  $y = \sqrt{3}x + 2\sqrt{3}$ 

 $\tan 60^\circ = \sqrt{3}$  이므로  $y = \sqrt{3}x + b$  에 (-2, 0) 을 대입하면

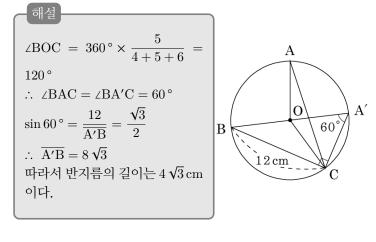
해설

 $0=-2\sqrt{3}+b$   $\therefore b=2\sqrt{3}$  따라서 구하는 일차함수의 식은  $y=\sqrt{3}x+2\sqrt{3}$  이다.


**19.** 4 sin 30° tan 45° cos 60° − 2 의 값을 구하여라.

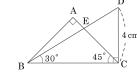
답:

▷ 정답: -1


(준식) =  $4 \times \frac{1}{2} \times 1 \times \frac{1}{2} - 2 = 1 - 2 = -1$ 

20. 다음 그림에서 원 O 위에 세 점 A, B, C 가 있다. 5.0ptAB : 5.0ptBC : 5.0ptCA = 4 : 5 : 6 이고, BC = 12 cm 일 때, 원의 반지름의 길이를 구하여라.




답:

ightharpoonup 정답:  $4\sqrt{3}$   $\underline{\mathrm{cm}}$ 



 $\underline{\mathrm{cm}}$ 

21. 다음 그림에서  $\triangle ABC$  와  $\triangle DBC$  는 각각  $\angle BAC = \angle BCD = 90^\circ$  인 직각삼각형이고,  $\angle DBC = 30^\circ$ ,  $\angle ACB = 45^\circ$ ,  $\overline{CD} = 4 \mathrm{cm}$  일 때,  $\triangle ABC$  의 넓이는?



- ①  $10 \text{ cm}^2$ ④  $13\text{cm}^2$
- ②  $11 \text{cm}^2$  ③  $14 \text{cm}^2$
- $312 \text{cm}^2$
- \_

 $\triangle BDC$  에서  $\sin 30^\circ = \frac{\overline{DC}}{\overline{BD}} = \frac{4}{\overline{BD}} = \frac{1}{2}, \overline{BD} = 8 \text{cm}$  이다. 또,  $\cos 30^\circ = \frac{\overline{BC}}{\overline{BD}} = \frac{\overline{BC}}{8} = \frac{\sqrt{3}}{2}, \overline{BC} = 4\sqrt{3}(\text{cm})$  이다.  $\triangle ABC$  에서  $\cos 45^\circ = \frac{\overline{AC}}{\overline{BC}} = \frac{\overline{AC}}{4\sqrt{3}} = \frac{\sqrt{2}}{2}, \overline{AC} = 2\sqrt{6} \text{ cm}$ 

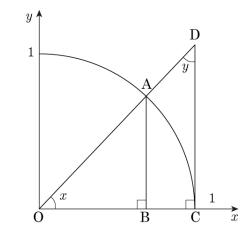
이다.  $\Delta ABC$ 는 직각이등변삼각형이므로 넓이를 구하면  $\frac{1}{2} \times 2\sqrt{6} \times 1$ 

 $2\sqrt{6} = 12(\text{cm}^2)$  이다.

**22.** 다음 그림에서  $\angle ABC=90^\circ$ ,  $\angle CAB=60^\circ$  이고,  $\overline{AC}=\overline{CD}=2$  일 때, tan 15° 의 값은?



①  $\sqrt{2}$  ②  $1 + \sqrt{2}$  ③  $1 + \sqrt{3}$  $4 \ 2 + \sqrt{3}$   $3 \ 2 - \sqrt{3}$ 


 $\angle CAB = 60^{\circ}$  이므로  $\angle ACB = 30^{\circ}$ 

해설

 $\triangle ACD$  는 이등변삼각형이므로  $\angle CDA = \frac{1}{2} \times 30^\circ = 15^\circ$ 

△ABC 에서  $\overline{AB} = \overline{AC}\cos 60^\circ = 1$ ,  $\overline{BC} = \overline{AC}\sin 60^\circ = \sqrt{3}$ 이므로  $\tan 15^\circ = \tan D = \frac{1}{2 + \sqrt{3}} = 2 - \sqrt{3}$ 

23. 다음 그림에서 반지름의 길이가 1 인 사분원을 이용하여 삼각비의 값을 선분의 길이로 나타낸 것 중 옳지 <u>않은</u> 것은?



- ①  $\sin x = \overline{AB}$ ④  $\sin y = \overline{OB}$

 $\Im \tan x = \overline{\text{CD}}$ 

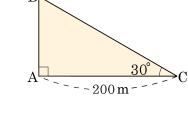
**24.**  $0^{\circ} < x < 90^{\circ}$  일 때,  $2\sin^2 x - 3\sin x + 1 = 0$  을 만족시키는 x 의

① 0°

② 15°

③30°

④ 45° ⑤ 60°

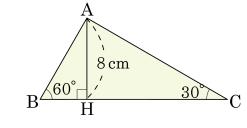

해설

 $\sin x = A$  라고 하면  $2A^2 - 3A + 1 = 0$ (2A - 1)(A - 1) = 0

 $A=\frac{1}{2},\ 1$ 

 $\sin x = \frac{1}{2}$ ,  $\sin x = 1$  즉,  $x = 30^\circ$  또는  $x = 90^\circ$  이다.  $0^{\circ} < x < 90^{\circ}$  이므로  $x = 30^{\circ}$  이다.

25. 강의 양쪽에 있는 두 지점 A, B 사이의 거리를 구하기 위해 A 지점에서 200 m 떨어진 곳에 다음 그림과 같이 C 지점을 정하였다. C 지점에서 A 지점과 B 지점을 바라본 각의 크기가  $30^\circ$  일 때, 두 지점 A, B 사이의 거리를 구하여라.




말: <u>m</u>
 > 정답: <sup>200√3</sup>/<sub>3</sub> m

3 ==

 $\tan 30^{\circ} = \frac{\overline{AB}}{\overline{AC}}, \overline{AB} = \overline{AC} \times \tan 30^{\circ}$   $\overline{AB} = 200 \times \frac{\sqrt{3}}{3} = \frac{200\sqrt{3}}{3} \text{(m)}$ 

 ${f 26}$ . 다음 그림에서  ${f \overline{AH}}=8{
m cm}$  일 때,  ${f \overline{BC}}$ 의 길이는?



① 
$$\frac{2\sqrt{3}}{3}$$
 cm ②  $\frac{4\sqrt{3}}{3}$  cm ③  $2\sqrt{3}$  cm ③  $2\sqrt{3}$  cm

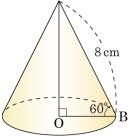
$$2 \frac{4\sqrt{3}}{3}$$

$$10\sqrt{3}$$

$$\sin 30^{\circ} = \frac{\overline{A}}{\overline{A}}$$

$$\sin 30^\circ = \frac{1}{\overline{AC}}$$

$$\overline{AC} = \frac{\overline{AH}}{\overline{AH}} = \frac{1}{\overline{AH}}$$


$$\sin 30^{\circ} \qquad 2$$

$$\sin 30^{\circ} = \frac{\overline{AH}}{\overline{AC}}$$

$$\overline{AC} = \frac{\overline{AH}}{\sin 30^{\circ}} = 8 \div \frac{1}{2} = 16 \text{(cm)}$$

$$\sin 60^{\circ} = \frac{\overline{AC}}{\overline{BC}}$$
따라서  $\overline{BC} = \frac{\overline{AC}}{\sin 60^{\circ}} = 16 \div \frac{\sqrt{3}}{2} = 32 \frac{32\sqrt{3}}{3} \text{(cm) 이다.}$ 

- **27.** 다음 그림과 같이 모선의 길이가 8cm 이고, 모선과 밑면이 이루는 각의 크기가 60° 인 원뿔의 부피를 구하면?



- ①  $32\sqrt{3}\pi \,\mathrm{cm}^3$  ②  $\frac{32\sqrt{3}}{3}\pi \,\mathrm{cm}^3$  ③  $\frac{64\sqrt{3}}{3}\pi \,\mathrm{cm}^3$ ④  $64\sqrt{3}\pi \,\mathrm{cm}^3$  ⑤  $\frac{192\sqrt{3}}{3}\pi \,\mathrm{cm}^3$

해설)

해설

 $\overline{\mathrm{OB}} = 8 \times \cos 60^{\circ} = 8 \times \frac{1}{2} = 4 (\,\mathrm{cm})$  $\overline{\mathrm{OA}} = 8 \times \sin 60\,^{\circ} = 8 \times \frac{\sqrt{3}}{2} = 4\,\sqrt{3}(\,\mathrm{cm})$ 

 $16\pi \times 4\sqrt{3} \times \frac{1}{3} = \frac{64\sqrt{3}}{3}\pi (\text{cm}^3)$  이다.

- 28. 수평면과  $20^{\circ}$ 를 이루는 경사면이 있다. 이 경사면을 똑바로 오르지 않고 오른쪽으로  $30\,^\circ$  되는 방향으로  $120\,\mathrm{m}$  올라갔을 때, 처음 오르기 시작한 지점보다 몇 m 높은 곳에 있게 되는지 소수 첫째 자리까지 구하면? (단, sin 20° = 0.3420)

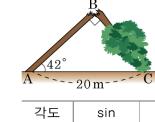
③ 35.5 m

② 34.6 m

 $\textcircled{1} \ \ 34.5\, \mathrm{m}$ 

 $436.5\,\mathrm{m}$ 

처음 오르기 시작한 지점을 A , 똑바로 오르는 방향을  $\overline{\mathrm{AL}}$  ,  $\overline{\mathrm{AL}}$ 


해설

보다 오른쪽으로  $30\,^{\circ}$  되는 방향으로  $120\mathrm{m}$  올라간 지점을 B 라 하자. B 지점에서  $\overline{AL}$  에 내린 수선의 발을 C 라 하면  $\overline{AC} = \overline{AB}\cos 30^{\circ} = 120 \times \frac{\sqrt{3}}{2} = 60\sqrt{3} (\,\mathrm{m})$ 

 $\overline{\mathrm{AC}}$  는 수평면과  $20\,^{\circ}$ 를 이루므로  $\mathrm{C}$  의 높이는  $\overline{AC} \sin 20^{\circ} = 60 \sqrt{3} \times 0.3420 = 60 \times 1.7321 \times 0.3420 = 35.54(m)$ 

따라서 35.5 m 이다.

29. 똑바로 서 있던 나무가 벼락을 맞아 다음 그림과 같이 직각으로 쓰러졌다. 다음 삼각비의 표를 이용하여 나무가 쓰러지기 전의 높이를 구하여라.

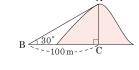


|    | 42       | 0.6691 | 0.7431 | 0.9004 |
|----|----------|--------|--------|--------|
|    | 48       | 0.7431 | 0.6691 | 1,1106 |
|    |          |        |        |        |
| 답: | <u>m</u> |        |        |        |

cos

tan

정답: 28.244 m


해설

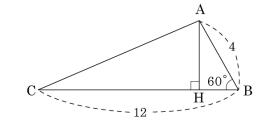
 $\overline{AB} = 20\cos42^\circ = 20 imes 0.7431 = 14.862 (\,\mathrm{m})$ 따라서 (나무의 높이)= 13.382 + 14.862 = 28.244(  $\mathrm{m}$ ) 이다.

\_\_\_\_\_

 $\overline{BC} = 20 \sin 42^{\circ} = 20 \times 0.6691 = 13.382 (\text{ m})$ 

30. 산의 높이를 구하기 위해 다음 그림과 같이 측량하였다. 산의 높이  $\overline{AC}$  를 구하면?




- ①  $\frac{100\sqrt{3}}{2}$  m ②  $\frac{100\sqrt{2}}{2}$  m ③  $\frac{100}{3}$  m ④  $\frac{100\sqrt{2}}{3}$  m

$$\tan 30^\circ = \frac{1}{1}$$

$$\tan 30^{\circ} = \frac{\overline{AC}}{100}$$

$$\therefore \overline{AC} = 100 \tan 30^{\circ} = 100 \times \frac{\sqrt{3}}{3} = \frac{100 \sqrt{3}}{3} \text{ (m)}$$

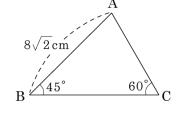
 $oldsymbol{31}$ . 다음 그림과 같은 삼각형 ABC 에서  $\overline{
m AC}$  의 길이는?



①  $3\sqrt{7}$  ②  $4\sqrt{7}$  ③  $5\sqrt{7}$  ④  $6\sqrt{7}$  ⑤  $7\sqrt{7}$ 

 $\overline{AH} = \overline{AB} \times \sin 60^{\circ} = 4 \times \sin 60^{\circ} = 4 \times \frac{3}{2} = 2\sqrt{3}$   $\overline{BH} = 4\cos 60^{\circ} = 4 \times \frac{1}{2} = 2$ 

$$BH = 4\cos 60^{\circ} = 4 \times \frac{1}{2} = 10$$
$$\therefore \overline{CH} = 12 - 2 = 10$$


$$\overrightarrow{AC} = 12 - 2 = 10$$

$$\overrightarrow{AC} = \sqrt{(2\sqrt{3})^2 + 10^2}$$

해설

$$= \sqrt{12 + 100} = \sqrt{112} = 4\sqrt{7}$$

**32.** 다음 그림과 같이 ∠B = 45°, ∠C = 60°, 
$$\overline{AB} = 8\sqrt{2} \text{cm}$$
 일 때,  $\overline{BC}$  의 길이를 구하면?



$$\left(8 + \frac{2\sqrt{3}}{3}\right)$$
 cm

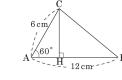
$$4$$
  $\left\langle 8 + \frac{4\sqrt{3}}{2} \right\rangle$  cr

$$\boxed{3} \left( 8 + \frac{8\sqrt{3}}{3} \right) \text{ cr}$$

점 A 에서  $\overline{BC}$ 에 내린 수선의 발을 H라고 하면  $\overline{AH}=8\sqrt{2}\sin 45\,^\circ$   $=8\sqrt{2}\times\frac{1}{\sqrt{2}}=8\,(cm)$ 

$$= 8 \text{ V2} \times \frac{1}{\sqrt{2}} = 8 \text{ (cm)}$$

$$\overline{BH} = \overline{AH} = 8 \text{ (cm)}$$


$$\tan 60^{\circ} = \frac{8}{\overline{CH}}$$

$$\overline{CH} = \frac{8}{\tan 60^{\circ}} = \frac{8}{\sqrt{3}} = \frac{8\sqrt{3}}{3} \text{ (cm)}$$

$$\tan 60^{\circ} = \overline{\overline{CH}}$$

$$\therefore \overline{BC} = \overline{BH} + \overline{CH} = 8 + \frac{8\sqrt{3}}{3} \text{ (cm)}$$

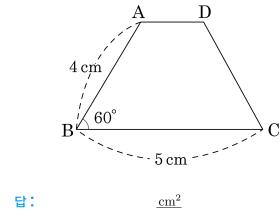
33. 다음 그림에서  $\overline{AC}=6\mathrm{cm},~\overline{AB}=12\mathrm{cm},~\angle A=60^\circ$  일 때,  $\triangle CHB$  의 넓이를 구하여라.



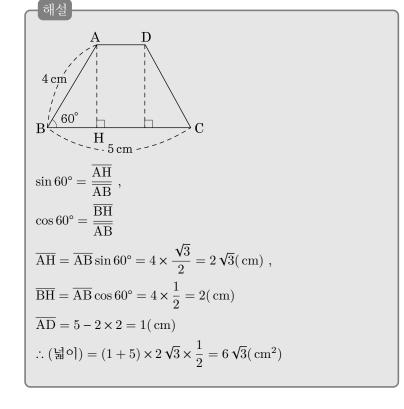
- ①  $\frac{21\sqrt{3}}{2}$  ②  $\frac{23\sqrt{3}}{2}$  ③  $\frac{25\sqrt{3}}{2}$  ④ ②  $\frac{29\sqrt{3}}{2}$

 $\sin 60^{\circ} = \frac{\overline{CH}}{6}$   $\overline{CH} = 6\sin 60^{\circ} = 6 \times \frac{\sqrt{3}}{2} = 3\sqrt{3} \text{ (cm)}$   $\cos 60^{\circ} = \frac{\overline{AH}}{6}$ 

 $\overline{AH} = 6 \times \cos 60^{\circ} = 6 \times \frac{1}{2} = 3 \text{ (cm)}$   $\overline{BH} = 12 - 3 = 9 \text{ (cm)}$ 


 $\therefore \triangle CHB = 9 \times 3\sqrt{3} \times \frac{1}{2} = \frac{27\sqrt{3}}{2} (cm^2)$ 

- ${f 34.}$  다음 그림의 평행사변형 ABCD 에서  $\angle A=$ 135°,  $\overline{AB} = 6 \text{cm}$ ,  $\overline{BC} = 8 \text{cm}$  이다.  $\overline{CD}$  의 중점을 E 라 할 때,  $\Delta BDE$  의 넓이를 구 하면?
- ①  $24\sqrt{2} \text{ cm}^2$  $4 12 \sqrt{3} \text{ cm}^2$
- $24\sqrt{3}\,\mathrm{cm}^2$  $\bigcirc 6\sqrt{2}\,\mathrm{cm}^2$
- $3 12 \sqrt{2} \text{ cm}^2$


구하는 넓이는 평행사변형의 넓이의  $\frac{1}{4}$  이다. 평행사변형의 넓이는  $6\times 8\times \sin 45\,^\circ = 48\times \frac{\sqrt{2}}{2} = 24\,\sqrt{2}$ 

 $\therefore$  구하는 넓이는  $24\sqrt{2} \times \frac{1}{4} = 6\sqrt{2} \text{(cm}^2)$  이다.

35. 다음 등변사다리꼴의 넓이를 구하여라.



ightharpoons 정답:  $6\sqrt{3}$   $m cm^2$ 

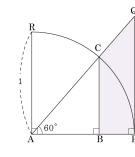


**36.**  $\tan A = 3$  일 때,  $\frac{\sin A \cos A + \sin A}{\cos^2 A + \cos A}$  의 값을 구하면?

①  $\frac{1}{\sqrt{3}}$  ②  $\frac{1}{3}$  ③ 1 ④ 3 ⑤  $\sqrt{3}$ 

an A = 3 이면  $\dfrac{\sin A}{\cos A} = 3$  이다. 따라서  $\sin A = 3\cos A$  이다. 따라서

 $\frac{\sin A \cos A + \sin A}{\cos^2 A + \cos A} = \frac{3\cos^2 A + 3\cos A}{\cos^2 A + \cos A} = 3 \text{ ord.}$ 


**37.** 이차방정식  $2x^2 - ax + 1 = 0$  의 한 근이  $\sin 60^\circ - \sin 30^\circ$  일 때, 상수 a 의 값을 구하여라.

답:

ightharpoonup 정답:  $2\sqrt{3}$ 

 $\sin 60^{\circ} - \sin 30^{\circ} = \frac{\sqrt{3}}{2} - \frac{1}{2} = \frac{\sqrt{3} - 1}{2} \circ | \Box \exists \frac{\sqrt{3} - 1}{2} \triangleq 주어진$  식의 x 에 대입하면  $2\left(\frac{\sqrt{3} - 1}{2}\right)^2 - \left(\frac{\sqrt{3} - 1}{2}\right)a + 1 = 0, \left(\frac{\sqrt{3} - 1}{2}\right)a = 3 - \sqrt{3}$  따라서  $a = \frac{2(3 - \sqrt{3})}{\sqrt{3} - 1} = 2\sqrt{3}$ 

38. 다음 그림의 부채꼴 APR는 반지름의 길이가 1 이고 중심각의 크기가 90° 이다. 빗금친 부분의 넓이는?



- ①  $\frac{\sqrt{3}}{8}$  ②  $\frac{\sqrt{3}}{4}$  ③  $\frac{3\sqrt{3}}{8}$  ④  $\frac{\sqrt{3}}{2}$  ⑤  $\frac{5\sqrt{3}}{8}$

 $\triangle ABC$  에서  $\overline{AC}=1, \angle A=60^\circ$  이므로  $\overline{AB}=\cos 60^\circ=rac{1}{2}$  ,  $\overline{BC} = \sin 60^{\circ} = \frac{\sqrt{3}}{2}$ 

 $\triangle APQ$  에서  $\overline{AP}=1, \angle A=60^\circ$  이므로  $\overline{AQ}=\frac{1}{\cos 60^\circ}=\frac{1}{\frac{1}{2}}=2$ ,  $\overline{PQ}=\tan 60^\circ=\sqrt{3}$  (빗금친 부분의 넓이)=  $\triangle APQ$  의 넓이- $\triangle ABC$  의 넓이

 $\triangle APQ$  의 넓이=  $\frac{1}{2} \times (1 \times \sqrt{3}) = \frac{\sqrt{3}}{2}$ 

 $\triangle ABC$  의 넓이=  $\frac{1}{2} \times \left(\frac{1}{2} \times \frac{\sqrt{3}}{2}\right) = \frac{\sqrt{3}}{8}$ 

 $\therefore$  (빗급친 부분의 넓이)=  $\frac{\sqrt{3}}{2} - \frac{\sqrt{3}}{8} = \frac{3\sqrt{3}}{8}$ 

**39.**  $y = -2\cos^2 x + 4\cos x + 5$  가 최댓값을 가질 때, x 의 값은?(단,  $0^{\circ} \le x \le 90^{\circ}$ )

① 0° ② 30° ③ 45° ④ 60° ⑤ 90°

 $\cos x = A \ (0 \le A \le 1)$  라 하면  $y = -2A^2 + 4A + 5 = -2(A - 1)^2 + 7$ 

해설

A=1 일 때, 최댓값 7 을 가지므로  $\cos x=1$  일 때  $x=0^\circ$ 

**40.**  $\sin(3x-30^\circ)=\frac{\sqrt{3}}{2}$  을 만족시키는 x 의 값을 구하여라. (단,  $0^\circ \le x \le 90^\circ$ )

▶ 답: 답:

▷ 정답: 30°

▷ 정답: 50°

 $\sin(3x - 30^\circ) = \frac{\sqrt{3}}{2} = \sin 60^\circ = \sin 120^\circ$  $3x - 30^\circ = 60^\circ, 3x - 30^\circ = 120^\circ$  $\therefore x = 30^\circ, 50^\circ$ 

- 41. 다음 그림과 같은  $\triangle ABC$  에서  $\overline{AB}=24$ ,  $\angle B=60^\circ$  이고 점D 가  $\overline{BC}$ 의 중점일 때,  $\overline{\mathrm{AD}}$  의 길이를 구하면?

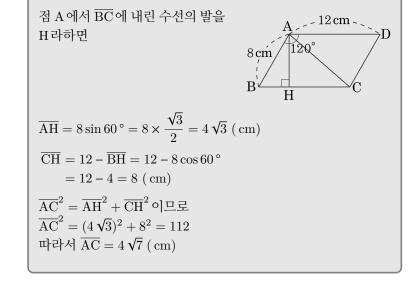
①  $6\sqrt{13}$  ② 6 ③ 12 ④  $12\sqrt{3}$  ⑤  $4\sqrt{13}$ 

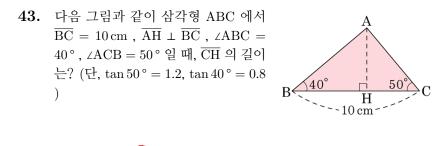
 $1) \ \overline{AC} = 24 \sin 60^{\circ} = 12 \sqrt{3}$ 

해설

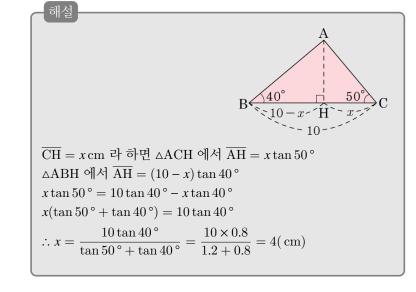
 $\overline{BC} = 24\cos 60^{\circ} = 12$ 

 $\overline{\mathrm{DC}} = 6$ 2)  $\overline{AD} = \sqrt{6^2 + (12\sqrt{3})^2} = 6\sqrt{13}$ 

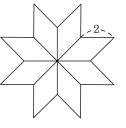

**42.** 다음 그림과 같이 ĀB = 8 cm, ĀD = 12 cm, ∠A = 120°인 평행사변형 ABCD 에서 대각선 AC의 길이를 구하여라.


 $\underline{\mathrm{cm}}$ 

**> 정답:** 4√7<u>cm</u>


답:

해설






① 2 cm ② 4 cm ③ 5 cm ④ 6 cm ⑤ 7 cm

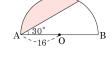


44. 다음 그림은 여덟 개의 합동인 마름모로 이루 어진 별모양이다. 마름모의 한 변의 길이가 2 일 때, 별의 넓이의 제곱값은?



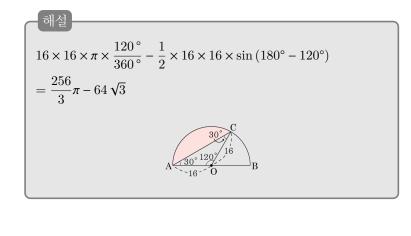
①  $16\sqrt{2}$ 

② 128

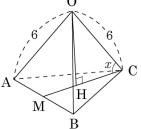

③  $128\sqrt{2}$ 

4 512 5 512  $\sqrt{2}$ 

 $360\degree \div 8 = 45\degree$  이므로 마름모 한 개의 넓이는  $2 \times \frac{1}{2} \times 2 \times$  $2\sin 45$ ° =  $2\sqrt{2}$ 이다.


따라서, 별의 넓이는  $2\sqrt{2} \times 8 = 16\sqrt{2}$   $\therefore (16\sqrt{2})^2 = 512$  이다.

45. 그림과 같이 반지름의 길이가 16 인 반원에서  $\angle BAC = 30^\circ$  일 때, 색칠한 부분의 넓이를 구하여라.

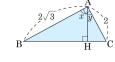



▶ 답:

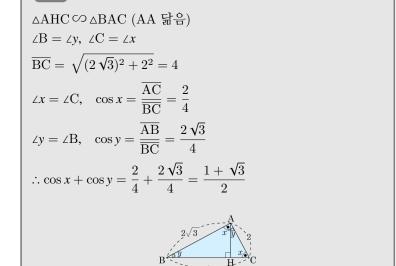
ightharpoonup 정답:  $\frac{256}{3}\pi - 64\sqrt{3}$ 



46. 다음 그림과 같이 모서리의 길이가 6 인 O 정사면체의 한 꼭짓점 O 에서 밑면에 내 린 수선의 발을 H 라 하고,  $\overline{\mathrm{AB}}$  의 중점을 M 이라 하자.  $\angle OCH = x$  라 할 때,  $\tan x$ 의 값을 구하여라.




답: **▷ 정답:** √2

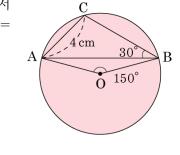

 $\overline{\text{CM}} = 6 \times \frac{\sqrt{3}}{2} = 3\sqrt{3}$   $\overline{\text{CH}} = 3\sqrt{3} \times \frac{2}{3} = 2\sqrt{3}$   $\overline{\text{OH}} = \sqrt{6^2 - (2\sqrt{3})^2} = \sqrt{24} = 2\sqrt{6}$ 

$$\therefore \tan x = \frac{\overline{OH}}{\overline{CH}} = \frac{2\sqrt{6}}{2\sqrt{3}} = \sqrt{2}$$

47. 다음 그림의 직각삼각형 ABC 에서  $\cos x + \cos y$  의 값은?



① 
$$\frac{\sqrt{3}-1}{2}$$
 ② 1  
④  $\sqrt{3}$  ③  $4\sqrt{3}$ 



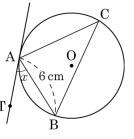

**48.** 다음 그림의 원 O 와 □AOBC 에서  $\overline{\rm AC}$  = 4 cm,  $\angle \rm ABC$  = 30 °,  $\angle \rm AOB$  = 150°일 때,  $\overline{AB}$ 의 길이는?

①  $2\sqrt{2} + 2\sqrt{3}$  ②  $2\sqrt{2} + 2\sqrt{5}$ 



⑤  $2\sqrt{3} + 2\sqrt{6}$ 




 $\angle ACB = \frac{360 \degree - 150 \degree}{2} = 105 \degree$  $\angle CAB = 180 \degree - (105 \degree + 30 \degree) = 45 \degree$ 

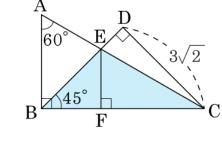
 $\Delta ABC$  의 점 C 에서  $\overline{AB}$  에 내린 수선의 발을 H 라 하면  $\overline{AH}$  =  $\overline{\rm CH} = 4\cos 45\,^{\circ} = 2\,\sqrt{2}\ (\,{\rm cm})$ 

 $\overline{\rm BH} = \frac{\overline{\rm CH}}{\tan 30^{\circ}} = 2\sqrt{2} \times \sqrt{3} = 2\sqrt{6} \ (\,{\rm cm})$ 

 $\therefore \ \overline{\rm AB} = \overline{\rm AH} + \overline{\rm BH} = 2\sqrt{2} + 2\sqrt{6} \ (\,\rm cm)$ 

49. 다음 그림에서  $\triangle ABC$  는 원 O 에 내접하고  $\triangle T$  는 원 O 의 접선이다.  $\angle BAT = x$  라하고  $\cos x = \frac{4}{5}$ ,  $\overline{AB} = 6 \mathrm{cm}$  일 때, 원 O 의 지름의 길이를 구하여라.




 답:

 ▷ 정답:
 10 cm

반지름의 길이를 r라 하면,  $\triangle ABC'$  은 직각삼각형이므로  $\cos x = \frac{\overline{BC'}}{2r} = \frac{4}{5}$   $\therefore$   $\overline{BC'} = \frac{8}{5}r$  직각삼각형 ABC' 에서  $6^2$  +  $\left(\frac{8}{5}r\right)^2 = (2r)^2, \frac{36}{25}r^2 = 36, r^2 = 25$   $\therefore$  r = 5 (cm) 따라서 원의 지름은 10 cm 이다.

 $\underline{\mathrm{cm}}$ 

- ${f 50}$ . 다음 그림과 같이 두 직각삼각자가 겹쳐져 있다.  $\angle {
  m ABC} = \angle {
  m BDC} =$ ∠DBC =  $45^\circ$ , ∠BAC =  $60^\circ$  이고,  $\overline{DC} = 3\sqrt{2} \mathrm{cm}$  일 때, 겹쳐진 부분인
  - △EBC 의 넓이는?



- ①  $6(\sqrt{3}-1)\text{cm}^2$  $39(\sqrt{3}-1)\text{cm}^2$
- ②  $6(\sqrt{3}+1)\text{cm}^2$  $4 27(\sqrt{3}-1)$ cm<sup>2</sup>
- ⑤  $12(\sqrt{3}-1)\text{cm}^2$

## $\Delta \mathrm{DBC}$ 에서 $\overline{\mathrm{BC}} = \sqrt{(3\sqrt{2})^2 + (3\sqrt{2})^2} = 6(\mathrm{cm})$

$$\triangle$$
EBC 에서  $\overline{\mathrm{EF}} = x$  라 하면

$$\overline{\mathrm{BF}} = \overline{\mathrm{EF}} = x, \, \overline{\mathrm{FC}} = \overline{\overline{\mathrm{EI}}}$$

$$\frac{\text{BF} = \text{EF} = x, \text{FC} = \frac{1}{\tan 30^{\circ}}}{\tan 30^{\circ}}$$

$$\overline{BF} = \overline{EF} = x, \overline{FC} = \frac{\overline{EF}}{\tan 30^{\circ}} = \sqrt{3}x$$

$$\overline{BC} = \overline{BF} + \overline{FC} \text{ old } 6 = x + \sqrt{3}x$$

$$x = \frac{6}{\sqrt{3} + 1} = 3(\sqrt{3} - 1)$$

$$\triangle EBC = \frac{1}{2} \times \overline{BC} \times \overline{EF} = \frac{1}{2} \times 6 \times 3(\sqrt{3} - 1) = 9(\sqrt{3} - 1)(\text{cm}^2)$$