1. 복소수 $z = (2+i)a^2 + (1+4i)a + 2(2i-3)$ 이 순허수일 때, 실수 a의 값은?

① -2 ② 1 ③ $\frac{3}{2}$ ④ $\frac{5}{2}$ ⑤ 3

 $z = (2a^2 + a - 6) + (a^2 + 4a + 4)i$ 순하수이므로 $2a^2 + a - 6 = 0$ $\Rightarrow (a+2)(2a-3) = 0$

 $\Leftrightarrow a = -2 \, \, \text{\!E}_{\overline{\Box}} \, a = \frac{3}{2}$

그런데 a=2이면,

 $a^2 + 4a + 4 = 0$ 이 되어 순허수가 성립되지 않는다. $\therefore a = \frac{3}{2}$

해설

2. $\frac{2-i}{2+i} + \frac{2+i}{2-i}$ 를 간단히 하면? (단, $i = \sqrt{-1}$ 이다.)

 $\frac{2-i}{2+i} + \frac{2+i}{2-i} = \frac{(2-i)^2 + (2+i)^2}{(2+i)(2-i)}$ $= \frac{3+3}{5} = \frac{6}{5}$

- **3.** $x = 1 + \sqrt{2}i$, $y = 1 \sqrt{2}i$ 일 때, $x^2 + y^2$ 의 값을 구하면?
 - ③ −2 ④ 2 ⑤ −3 ① -1 ② 1

x + y = 2, xy = 3 $x^2 + y^2 = (x + y)^2 - 2xy = 4 - 6 = -2$

4.
$$\frac{1}{\sqrt{-2}-\sqrt{-1}}$$
의 값은 ?

①
$$1 - \sqrt{2}$$

①
$$1 - \sqrt{2}$$
 ② $-1 - \sqrt{2}$ ③ $(1 + \sqrt{2})i$ ④ $-(1 + \sqrt{2})i$ ⑤ $(1 - \sqrt{2})i$

$$\frac{1}{\sqrt{-2} - \sqrt{-1}} = \frac{1}{\sqrt{2} - 1} \times \frac{1}{i}$$

$$= (\sqrt{2} + 1) \times (-i)$$

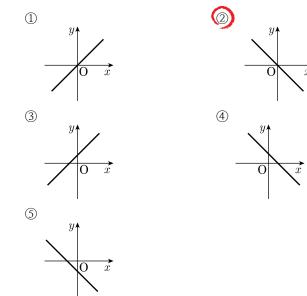
$$= -(1 + \sqrt{2})i$$

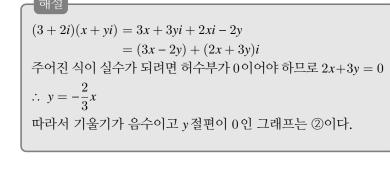
5. $\sqrt{-x^2(x^2-1)^2}$ 이 실수가 되는 서로 다른 실수 x들의 총합은?

① -1 ② 0 ③ 1 ④ 2 ⑤ 3

 $\sqrt{-x^2(x^2-1)^2} = \sqrt{x^2(x^2-1)^2}i$ $= \sqrt{x^2}\sqrt{(x^2-1)^2}i$ $= |x| \cdot |x^2 - 1|i$ $= |x| \cdot |x + 1||x - 1|i$ 그러므로 x = 0, 1, -1일 때 총합은 0이 된다.

6. (3+2i)z가 실수가 되도록 하는 복소수 z=x+yi를 점 (x, y)로 나타낼 때, 점 (x, y)는 어떤 도형 위를 움직이는가 ? (단, x, y는 실수)





- 7. 복소수 z = x + yi를 좌표평면 위에 점 p(x, y)에 대응시킬 때, (3-4i)z가 실수가 되게 하는 점 p의 자취가 나타내는 도형은?
 - ③ 위로 볼록한 포물선
 ④ 아래로 볼록한 포물선
 - ① 기울기가 양인 직선 ② 기울기가 음인 직선
 - ⑤ 원

(3-4i)z = (3-4i)(x+yi)= (3x + 4y) + (-4x + 3y) i실수가 되려면 허수부 -4x + 3y = 0이다.

 $\therefore y = \frac{4}{3}x \ (\Rightarrow 기울기가 양인 직선)$

8. 복소수 $z = (1+i)x^2 + (5+2i)x + 3(2-i)$ 에서 z가 순허수일 때, 실수 x의 값은? (단, $i = \sqrt{-1}$)

① -3

②-2 ③ -1 ④ 0 ⑤ 1

= (x+2)(x+3) + (x-1)(x+3)i순허수가 되려면 실수부= 0 , 허수부≠ 0

 $z = (x^2 + 5x + 6) + (x^2 + 2x - 3)i$

 $\therefore x = -2$

해설

9. 복소수 $(1+i)x^2 + 2(2+i)x + 3 - 3i$ 를 제곱하면 음의 실수가 된다. 이 때, 실수 *x*의 값은? (단, $i^2 = -1$)

① -1 ② 1 ③ -3 ④ 3 ⑤ 7

해설

 $(x^2 + 4x + 3) + (x^2 + 2x - 3)i$ 가 순허수이어야 하므로 $x^2 + 4x + 3 = 0$, $x^2 + 2x - 3 \neq 0$ (x+3)(x+1) = 0, x = -1, x = -3 $(x+3)(x-1) \neq 0, x \neq 1, x \neq -3$

 $\therefore x = -1$

10.
$$\alpha=2+i,\;\beta=1-2i$$
 일 때, $\left(\frac{1}{\alpha}\right)^2+\frac{1}{\alpha\beta}+\left(\frac{1}{\beta}\right)^2$ 의 값은? (단, $i=\sqrt{-1}$)

①
$$\frac{4}{8} - \frac{3}{8}i$$
 ② $\frac{4}{8} \pm \frac{3}{8}i$ ③ $\frac{4}{25} - \frac{3}{25}i$ ⑤ $\frac{4}{8} + \frac{3}{8}i$

$$\alpha = 2 + i, \ \beta = 1 - 2i = -i(2 + i) = -i\alpha \ \Box = \beta^2 = -\alpha^2$$

$$\therefore \frac{1}{\alpha^2} + \frac{1}{\beta^2} = \frac{1}{\alpha^2} - \frac{1}{\alpha^2} = 0$$

$$\therefore (준식) = \frac{1}{\alpha\beta}$$

$$= \frac{1}{(2+i)(1-2i)}$$

$$= \frac{1}{4-3i}$$

$$= \frac{4+3i}{2^5}$$

- 11. 복소수 z의 켤레복소수가 \bar{z} 일 때, 등식 $(1-i)\bar{z}+2iz=3-i$ 를 만족 시키는 z를 구하면?
- ① 3-2i ② -3+i ③ 3+i
- $\bigcirc 3 2i$ $\bigcirc 3 i$

복소수 z = x + yi(x, y 는 실수)라 놓으면

해설

 $\bar{z} = x - yi$

따라서, 주어진 식은

(1-i)(x-yi) + 2i(x+yi) = 3-i

x - yi - xi - y + 2xi - 2y = 3 - i(x-3y) + (x-y)i = 3-i

복소수의 상등에 의하여 x-3y=3 , x-y=-1

 $\therefore x = -3, y = -2$

 $\therefore z = -3 - 2i$

- **12.** x 에 대한 방정식 (a-2)(x-a)=0의 풀이 과정에서 다음 중 옳은 것은?
 - ③ a=2일 때, 불능

① a=0일 때, x=2

- ② a ≠ 2 일 때, x = a ④ a = 0 일 때, 부정
- ⑤ 해는 없다.

해설

(a-2)(x-a) = 0 $\Rightarrow a = 2 \stackrel{\leftarrow}{\text{\mathrice}} x = a$

i) a = 2 일 때 : 부정 ii) a ≠ 2 일 때 : x = a

- **13.** x에 대한 일차방정식 5x + a = 2x + 12의 해가 자연수일 때, 자연수 *a* 의 개수는?

 - ① 1개 ② 2개
- ③3개
- ④ 4개 ⑤ 무수히 많다

5x - 2x = 12 - a, 3x = 12 - a

 $\therefore x = \frac{12 - a}{3}$ 자연수 $a = 1, 2, 3, \cdots$ 을 대입했을 때,

 $x = \frac{12 - a}{3}$ 가 자연수가 되는 경우는

12 - a 가 3 의 배수이면서 a < 12 일 때이다. i) a = 3 일 때, $x = \frac{12 - 3}{3} = 3$

ii) a = 6 일 때, $x = \frac{12 - 6}{3} = 2$

iii)
$$a = 9$$
 일 때, $x = \frac{12 - 9}{3} = 1$
따라서 자연수 a 의 개수는 3개이다.

- **14.** |x-2| + |x-3| = 1을 만족하는 실수 x의 개수는?
 - ① 0개 ④ 3개
- ② 1개
- ③ 2개
- ⑤ 4 개이상

해설 |x-2| + |x-3| = 1 에서

i) x < 2일 때,

- -(x-2) (x-3) = 1
- ∴ x = 2 (성립하지 않음)
- ii) 2 ≤ x < 3일 때, (x-2) - (x-3) = 1
- $\therefore \ 0 \cdot x = 0 \ (모든 실수)$ iii) $x \ge 3$ 일 때,
- (x-2) + (x-3) = 1
- $\therefore x = 3$

15. 방정식|x-3|+|x-4|=2의 해의 합을 구하여라.

답:

▷ 정답: 7

i) x < 3일 때, -(x-3) - (x-4) = 3, -2x = -5 $\therefore x = \frac{5}{2}$ ii) $3 \le x < 4$ 일 때 $(x-3) - (x-4) = 2, 0 \cdot x = 1$ \therefore 해가 없다. iii) $x \ge 4$ 일 때 x-3+x-4=2, 2x=9 $\therefore x = \frac{9}{2}$ 따라서 $x = \frac{5}{2}, \frac{9}{2}$ 이고 그 합은 7 16. 연산 *를 a*b = ab + 2(a+b)라 정의할 때, 다음 방정식의 두 근을 α, β 라 한다. 이때, $|\alpha - \beta|$ 의 값은?

$$(3x*x) - (3*x) + \{(-1)*2\} = 0$$

① 0

해설

2 1 3 2

⑤ 4

연산 * 의 정의에 따라서

 $3x * x = 3x \cdot x + 2(3x + x) = 3x^2 + 8x$, $3 * x = 3 \cdot x + 2(3 + x) =$

5x + 6, $-1 * 2 = (-1) \cdot 2 + 2(-1+2) = -2 + 2 = 0$ 주어진 식은 $3x^2 + 8x - (5x + 6) + 0 = 0$

 $3x^2 + 3x - 6 = 0$ 에서 3(x+2)(x-1) = 0

 $\therefore x = -2 \stackrel{\leftarrow}{\Sigma} \stackrel{\leftarrow}{L} x = 1 \quad \therefore \mid \alpha - \beta \mid = 3$

17. 이차방정식 | $x^2 - 5 \mid = 4x$ 의 모든 근의 합은?

① 5 ② 0 ③ 6 ④ 10 ⑤ 12

i) $x^2 - 5 \ge 0 \Rightarrow x \le -\sqrt{5} \stackrel{\leftarrow}{\Sigma} x \ge \sqrt{5} \cdots \bigcirc$ $x^2 - 4x - 5 = 0$

(x+1)(x-5) = 0 $x = -1 \pm \frac{1}{5} = 5$

 $x = -1 \stackrel{\frown}{=} 5$ $\Rightarrow x = 5 (\because \bigcirc)$

해설

ii) $x^2 - 5 < 0 \implies -\sqrt{5} < x < \sqrt{5} \cdots \bigcirc$ $x^2 + 4x - 5 = 0$

(x-1)(x+5) = 0 $x = 1 \, \text{ } \pm \pm -5$

⇒ x = 1 (∵ ⓒ) ∴ 근의 합: 6

18. 방정식 $x^2 - 2|x| - 3 = 0$ 의 근의 합을 구하여라.

답:

▷ 정답: 0

해설

i) $x \ge 0$ 일 때 $x^2 - 2x - 3 = 0, (x+1)(x-3) = 0$ x = -1 또는 x = 3

그런데 x ≥ 0 이므로 x = 3 ii) x < 0일 때

॥) x < 0일 때 $x^2 + 2x - 3 = 0$, (x - 1)(x + 3) = 0

 x = 1 또는 x = -3

 그런데 x < 0 이므로 x = -3</td>

 (i), (ii)에서 x = 3 또는 x = -3

따라서 근의 합은 0이다.

19. 방정식 $x^2 + |x| = |x - 1| + 5$ 를 만족하는 두 근의 곱은?

① $-2\sqrt{6}$ ② $-\sqrt{6}$ ③ 0
④ $\sqrt{6}$ ⑤ $2\sqrt{6}$

i) x < 0일 때 $x^2 - x = -(x - 1) + 5$, $x^2 = 6$ $\therefore x = \pm \sqrt{6}$ 그런데 x < 0이므로 $x = -\sqrt{6}$ ii) 0 ≤ x < 1 일 때 $x^2 + x = -(x - 1) + 5$ $x^2 + 2x - 6 = 0$ $\therefore x = -1 \pm \sqrt{7}$ 그런데 $0 \le x < 1$ 이므로 해가 없다. iii) *x* ≥ 1일 때, $x^2 + x = x - 1 + 5, \ x^2 = 4$ $\therefore x = \pm 2$ 그런데 $x \ge 1$ 이므로 x = 2i), ii), iii) 에서 주어진 방정식의 해는 x = 2또는 $x = -\sqrt{6}$ 이므로 두 근의 곱은 $-2\sqrt{6}$

- **20.** 1 < x < 3인 x에 대하여 방정식 $x^2 [x]x 2 = 0$ 의 해를 구하여라. (단, [x] 는 x를 넘지 않는 최대의 정수)
- ① 2 ② $1 + \sqrt{2}$ ③ $1 + \sqrt{3}$
- ④ $\sqrt{5}-1$ ⑤ $2\sqrt{2}-1$

(i) 1 < x < 2일 때, [x] = 1

- 준식은 $x^2 x 2 = 0$, (x 2)(x + 1) = 0 \therefore x = -1 또는 x = 2
- 그런데 1 < x < 2이므로 만족하는 해가 없다.
- (ii) $2 \le x < 3$ 일 때, [x] = 2
- 준식은 $x^2-2x-2=0$ 이고 근의 공식에 의하여 $x=1\pm\sqrt{3}$
- 그런데 $2 \le x < 3$ 이므로 만족하는 해는 $x = 1 + \sqrt{3}$

21. x에 대한 이차방정식 $x^2 + ax + b = 0$ 의 한 근이 $-1 + \sqrt{2}$ 일 때, 유리수 a,b의 값을 구하여라.

답:답:

1

 \triangleright 정답: a=2 \triangleright 정답: b=-1

 $x^2 + ax + b = 0$ 에 $x = -1 + \sqrt{2}$ 를 대입하여 정리하면

해설

 $3 - 2\sqrt{2} + a(-1 + \sqrt{2}) + b = 0$ $-a + b + 3 + (a - 2)\sqrt{2} = 0$

-a+b+3=0과 a-2=0에서 a=2, b=-1

22. x에 대한 이차방정식 $x^2 + ax + b = 0$ 의 한 근이 1 + i일 때, 실수 a,b의 값을 구하여라.

▶ 답: ▶ 답:

> 정답: *a* = −2

➢ 정답: b = 2

해설

 $x^2 + ax + b = 0$ 에 $x = 1 \pm i$ 를 대입하여 정리하면 1 + 2i - 1 + a(1+i) + b = 0과 a + b + (a + 2)i = 0이다. 위 식을 정리하면 a + b = 0과 a + 2 = 0에서 a = -2, b = 2이다.

계수가 실수이므로 한 근이 복소수 근이면 켤레복소수 근을 갖

해설

는다. 따라서 두 근은 1+i, 1-i근과 계수의 관계에서 -a = (1+i) + (1-i) = 2 $\therefore a = -2$

b = (1+i)(1-i) = 2 : b = 2

23. 이차방정식 $x^2 - x + m = 0$ 의 한 근이 2일 때, 다른 한 근을 구하여라. (단, m은 상수)

▶ 답: ▷ 정답: -1

 $x^2 - x + m = 0$ 의 한 근이 2이므로

해설

x = 2를 대입하면 $2^2 - 2 + m = 0 \quad \therefore m = -2$

따라서 주어진 방정식은 $x^2 - x - 2 = 0$ 이다.

이 방정식을 풀면 (x-2)(x+1) = 0에서 x = 2 또는 x = -1

이므로 다른 한 근은 -1이다.

24. 이차방정식 $x^2 - ax + 12 = 0$ 의 두 근이 3, b일 때, ab의 값을 구하여라.

▶ 답:

▷ 정답: 28

x=3이 $x^2-ax+12=0$ 의 근이므로

해설

9-3a+12=0 $\therefore a=7$ 이 때 $x^2-7x+12=0$ 에서 (x-3)(x-4)=0그러므로 x=3 또는 x=4 $\therefore b=4$ $\therefore ab=28$

25. 이차방정식 $x^2 + mx + m - 1 = 0$ 의 한 근이 1일 때, 다른 한 근을 구하여라.

▶ 답:

➢ 정답: -1

1이 $x^2 + mx + m - 1 = 0$ 의 근이므로

해설

x = 1을 대입하면 1 + m + m - 1 = 0 $\therefore m = 0$ 주어진 방정식은 $x^2 - 1 = 0$ $\therefore x = \pm 1$ 따라서 다른 한 근은 x = -1 $26. \quad x^2 + ax + b = 0, \ x^2 + 2bx + 3a = 0$ 를 동시에 만족하는 x는 -1밖에 없을 때, 상수 ab의 값을 구하여라.

▶ 답:

▷ 정답: 12

x = -1은 두 이차방정식 $x^2 + ax = b = 0$, $x^2 + 2bx + 3a = 0$ 의 공통근이므로 $1 - a + b = 0, \ 1 - 2b + 3a = 0$ 두 식을 연립하여 풀면 a = -3, b = -4 $\therefore ab = 12$

27. 다음 설명 중 <u>틀린</u> 것을 고르면?

- ① $x^2 + 5x + 1 = 0$ 은 서로 다른 두 실근 을 가진다. ② $x^2 + 5 = 0$ 는 두 허근을 가진다.
- ③ m = 0 또는 4일 때, $x^2 mx + m = 0$ 은 중간을 가진다.
- ④ $k \ge 1$ 일 때 $x^2 2x + 2 k = 0$ 은 서로 다른 두 실근을 가진다 ⑤ $x^2 - 6x + a = 0$ 은 a = 9일 때만 중근을 가진다.

① $25 - 4 \cdot 1 \cdot 1 = 21 > 0$

해설

- ② $0^2 4 \cdot 1 \cdot 1 = -4 < 0$
- $(3) (-m)^2 4 \cdot 1 \cdot m = m(m-4) = 0$
- $9 1 \cdot a = 9 a = 0, \ a = 9$ $\Rightarrow \textcircled{4} (-1)^2 - 1 \cdot (2 - k) = k - 1 > 0 : k > 1$

28. x에 대한 이차방정식 $x^2k - \left(x - \frac{1}{4}\right)k + \frac{1}{4} = 0$ 이 허근을 가질 때, 실수 k의 값의 범위는?

① k < 0 ② k > 0 ③ $0 < k < \frac{1}{4}$ ④ $k \le 0$ ⑤ $k \ge 0$

 $x^2k - \left(x - \frac{1}{4}\right)k + \frac{1}{4} = 0 \,$ 허근을 가져야 하므로 x에 대한 내림차순으로 정리하면 $kx^2 - kx + \frac{1}{4}(k+1) = 0$

$$D = (-k)^{2} - 4k \cdot \frac{1}{4}(k+1) < 0$$

$$= k^{2} - k^{2} - k = -k < 0 \quad \therefore k > 0$$

$$\therefore k > 0$$

- ${f 29.}$ x에 대한 이차방정식 $ax^2+2(a-1)x-(a+1)=0$ 은 어떤 근을 갖는지 판별하시오. (단, *a*는 실수)
 - ① 중근
- ② 한 실근과 한 허근
- ③ 서로 다른 두 실근 ④ 서로 같은 두 실근 ⑤ 서로 다른 두 허근

$$ax^{2} + 2(a-1)x - (a+1) = 0$$

$$\frac{D}{4} = (a-1)^{2} + a(a+1)$$

$$= a^{2} - 2a + 1 + a^{2} + a$$

$$= 2a^{2} - a + 1 = 2\left(a^{2} - \frac{1}{2}a\right) + 1$$

$$= 2\left(a^{2} - \frac{1}{2}a + \frac{1}{16}\right) + 1 - \frac{1}{8}$$

$$= 2\left(a - \frac{1}{4}\right)^{2} + \frac{7}{8} > 0$$

따라서 서로 다른 두 실근을 갖는다.

30. 이차방정식 $2x^2 - 4x - 3k = 0$ 이 허근을 갖고, 동시에 $x^2 + 5x - 2k = 0$ 이 실근을 갖도록 하는 정수 k의 개수를 구하면?

33개 **4**4개 **5**5개 ① 1개 ② 2개

 $2x^2 - 4x - 3k = 0$ 이 허근을 가질 조건은 $\frac{D}{4} = 4 + 6k < 0$

따라서, 정수 k = -3, -2, -1:: 정수 k의 개수는 3개

31. x에 대한 이차방정식 $x^2 + (2m + a + b)x + m^2 + ab = 0$ 이 m의 값에 관계없이 항상 중근을 가질 때, 실수 a + b의 값을 구하여라.

 답:

 ▷ 정답:
 0

V 0L.

 $x^{2} + (2m + a + b)x + m^{2} + ab = 0$

항상 중근을 가질 조건: 판별식 D=0 $D=(2m+a+b)^2-4(m^2+ab)=0$ $4m^2+a^2+b^2+4ma+2ab+4mb-4m^2-4ab=0$ m에 관해 식을 정리하면 $(4a+4b)m+(a^2-2ab+b^2)=0$ $4a+4b=0, \quad a^2-2ab+b^2=0$

 $\therefore a + b = 0$

32. x에 관한 이차방정식 $x^2 + 2(m+a-2)x + m^2 + a^2 - 3b = 0$ 이 m의 값에 관계없이 항상 중근을 가질 때, 상수 a,b에 대하여 a+3b의 값은?

① 2 ② 4

36

4 8 **5** 10

해설

중근을 가지려면 판별식이 0이다. $D' = (m + a - 2)^2 - (m^2 + a^2 - 3b) = 0$ $\Rightarrow 2m(a-2) + 4 - 4a + 3b = 0$ m에 관계없이 성립하려면, $a=2 \quad \Rightarrow \quad b=\frac{4}{3}$

a + 3b = 6

- **33.** |x|(2+3i)+2|y|(1-2i)=6-5i를 만족하는 실수 x, y의 순서쌍 (x, y)를 꼭짓점으로 하는 다각형의 넓이는?

① 5 ② 6 ③ 7

48 **5** 9

(2 | x | +2 | y |) + (3 | x | -4 | y |)i = 6 - 5i복소수의 상등에 의하여

|x| + |y| = 3, 3|x| - 4|y| = -5

두 식을 연립하면 |x| = 1, |y| = 2

 $(x, y) \rightarrow (1, 2), (1, -2), (-1, 2), (-1, -2)$

-1 O 1 x \therefore 직사각형의 넓이 $= 2 \times 4 = 8$

34. 자연수 n에 대하여 $1 + \frac{1}{i} + \left(\frac{1}{i}\right)^3 + \left(\frac{1}{i}\right)^5 + \dots + \left(\frac{1}{i}\right)^{2n-1}$ 의 값을 모두 구하여라. (단, $i = \sqrt{-1}$)

답:

답:

▷ 정답: 1-i

▷ 정답: 1

해설 $\frac{1}{i} = -i, \quad \left(\frac{1}{i}\right)^3 = i$ i) n = 2k일 때, $1 + \frac{1}{i} + \left(\frac{1}{i}\right)^3 + \left(\frac{1}{i}\right)^5 + \dots + \left(\frac{1}{i}\right)^{2n-1}$ $= 1 - i + i - i + \dots + i = 1$ ii) n = 2k - 1일 때

 $1 + \frac{1}{i} + \left(\frac{1}{i}\right)^3 + \left(\frac{1}{i}\right)^5 + \dots + \left(\frac{1}{i}\right)^{2n-1}$

 $= 1 - i + i - i + \dots - i$ = 1 - i

- **35.** 정수 n에 대해 $z=i^n+i^{-n}, i=\sqrt{-1}$ 을 만족하는 z의 개수는?
 - ① 1개
- ② 2개
- ③3개
- ④ 4개
- ⑤ 4개보다 많다.

해설

정수 n 에 대하여 $i^n = i$ 또는 -1 또는 -i 또는 1, $i^n=i$ 이면 $i^{-n}=-i$, $i^n=-1$ 이면

$$i^{-n} = -1$$
, $i^n = -i$ 이면 $i^{-n} = i$ $i^n = 1$ 이면

$$i^{-n}=i$$
 , $i^n=1$ 이면

$$i^{-n} = 1$$

 $i^{-n} = 1$
 $i^{n} + i^{-n} = 0, -2, 0, 2$

- **36.** 복소수 z = a + bi, w = b + ai $(a, b = ab \neq 0$ 인 실수, $i = \sqrt{-1}$)에 대하여 다음 중 옳지 않은 것은? (단, \overline{z} , \overline{w} 는 각각 z, w 의 켤레복소 수이다.)
 - ① $i\overline{z} = w$

①: $i\overline{z} = i(a - bi) = b + ai = w$

- ② :①에서 $\bar{z} = -iw$ ····· ①
- 같은 방법으로 $\overline{w} = -iz$ ····· ①
- ⑤, ⓒ을 대입하면 $\frac{\overline{w}}{\overline{z}} = \frac{-iz}{-iw} = \frac{z}{w}$ ③ :①, ⓒ을 대입하면
- (좌변 $) = z \cdot (-iz) = -iz^2$, (우변 $)=(-iw)\cdot w=-iw^2$
 - .. 좌변≠우변
 - ④ : ②에서 $z \cdot \overline{z} = w \cdot \overline{w}$

37. $z^2 = \sqrt{5} + i$ 를 만족하는 복소수 z 에 대하여 $z\bar{z}$ 의 값은? (단, \bar{z} 는 z의 켤레복소수)

해설

① $\sqrt{2}$ ② $\sqrt{3}$ ③ 2 ④ $\sqrt{5}$ ⑤ $\sqrt{6}$

z=x+yi $(x,\ y$ 는 실수)로 놓으면 $(x+yi)^2=\sqrt{5}+i$ $x^2-y^2+2xyi=\sqrt{5}+i$ 에서 복소수가 서로 같을 조건에 의하여 $x^2 - y^2 = \sqrt{5}, \ 2xy = 1$ $z\overline{z} = (x + yi)(x - yi) = x^2 + y^2$ 이旦로

 $(x^2 + y^2)^2 = (x^2 - y^2)^2 + 4x^2y^2 = (\sqrt{5})^2 + 4\left(\frac{1}{2}\right)^2 = 6$ $x^2 + y^2 > 0$ 이므로 $x^2 + y^2 = \sqrt{6}$

 $\therefore z\overline{z} = \sqrt{6}$

해설

 $z^2 = \sqrt{5} + i , \overline{z^2} = \sqrt{5} - i$ $z^2\overline{z^2} = (\sqrt{5} + i)(\sqrt{5} - i) = 6$ $z\bar{z} = \pm \sqrt{6}$

 $z\bar{z} \ge 0$ 이므로 $z\bar{z} = \sqrt{6}$

38. 방정식 $x^2 + x + 1 = 0$ 의 한 근을 w 라 할 때, $z = \frac{3w + 1}{w + 1}$ 이라 하면, z̄z 의 값은? $(단, \overline{z} 는 z 의 켤레복소수)$

해설

①7 2 6 3 5 4 4 5 3

 $x^2 + x + 1 = 0$ 의 한 근을 w 라 하면, 다른 근은 \overline{w} 이다. $w + \overline{w} = -1, \ w\overline{w} = 1$ $z\overline{z} = \frac{3w+1}{w+1} \cdot \frac{3\overline{w}+1}{\overline{w}+1}$ $= \frac{9w\overline{w}+3(w+\overline{w})+1}{w\overline{w}+(w+\overline{w})+1}$ = 7

39. 다음 중 $(2+3i)z + (2-3i)\overline{z} = 2$ 를 만족하는 복소수 z의 개수는? (단, ₹는 z의 켤레복소수)

③ 2 개

- ① 없다. ② 1 개 ⑤ 무수히 많다. ④ 3 개

z=a+bi로 놓으면 $\bar{z}=a-bi$ (단, $a,\ b$ 는 실수) 이므로 주어진 식에 대입하면 (2+3i)(a+bi) + (2-3i)(a-bi) = 2

(2a - 3b) + (3a + 2b)i + (2a - 3b) - (3a + 2b)i = 2

2(2a - 3b) = 2 $\therefore 2a - 3b = 1$

따라서 2a-3b=1을 만족하는 a, b는 무수히 많고, z=a+bi이므로 문제의 조건을 만족하는 z가 무수히 많음을 알 수 있다.

40. $\alpha=\frac{-1+\sqrt{3}i}{2}$ 일 때, 다음 보기 중 옳은 것을 <u>모두</u> 고른 것은? (단, \overline{z} 는 z 의 켤레복소수)

① ① ② ① , © ③ ① , © ④ © , © ⑤ ① , © , ©

① :
$$\alpha = \frac{-1 + \sqrt{3}i}{2}$$
 , $2\alpha + 1 = \sqrt{3}i$
양변을 제곱해서 정리하면 $\alpha^2 + \alpha + 1 = 0$
② : $(\alpha - 1)(\alpha^2 + \alpha + 1) = 0$, $\alpha^3 = 1$
 $1 + \alpha + \alpha^2 + \dots + \alpha^{15}$
 $= 1 + \alpha + \alpha^2 + \alpha^3(1 + \alpha + \alpha^2) + \dots + \alpha^{15} = \alpha^{15}$
 $= (\alpha^3)^5 = 1$ (: $\alpha^2 + \alpha + 1 = 0$)
② : $\overline{\alpha} = \frac{-1 - \sqrt{3}i}{2}$, $\alpha + \overline{\alpha} = -1$, $\alpha \overline{\alpha} = 1$
 $z = \frac{\alpha + 3}{2\alpha + 1}$, $\overline{z} = \frac{\overline{\alpha} + 3}{2\overline{\alpha} + 1}$
 $z\overline{z} = \frac{\alpha \overline{\alpha} + 3(\alpha + \overline{\alpha}) + 9}{4\alpha \overline{\alpha} + 2(\alpha + \overline{\alpha}) + 1} = \frac{1 - 3 + 9}{4 - 2 + 1} = \frac{7}{3}$

© 이 성립함을 다음과 같이 직접 계산할 수 있다. $\alpha = \frac{-1 + \sqrt{3}i}{2}$ $\Rightarrow 2\alpha + 1 = \sqrt{3}i, \alpha + 3 = \frac{5 + \sqrt{3}i}{2}$ $\therefore \frac{\alpha + 3}{2\alpha + 1} = \frac{5 + \sqrt{3}i}{2\sqrt{3}i}$ $= -\frac{5i - \sqrt{3}}{2\sqrt{3}}$ $z \cdot \bar{z} = \frac{\sqrt{3 - 5i}}{2\sqrt{3}} \times \frac{\sqrt{3 + 5i}}{2\sqrt{3}} = \frac{7}{3}$

41. $a_1, a_2, \cdots a_{10}$ 은 1 또는 -1 의 값을 갖고 $a_1a_2 \cdots a_{10} = 1$ 일 때, $\sqrt{a_1}\sqrt{a_2}\cdots \sqrt{a_{10}}$ 의 값이 될 수 있는 수를 다음 <보기>에서 모두고르면? (단, $i=\sqrt{-1}$)

해설 $a_1a_2 \cdots a_{10} = 1 \text{ 이면 } a_1, \ a_2, \ \cdots, \ a_{10} \text{ 중에서 } -1 \text{ 이 되는 }$ 수는 짝수 (0 포함) 개 있다. i) -1 이 4k + 2(k = 0, 1, 2) 개 있을 때 $\sqrt{a_1}\sqrt{a_2}\cdots \sqrt{a_{10}}$ $= \sqrt{a_1a_2\cdots a_{10}} \ i^{4k+2} = \sqrt{1} \cdot i^2 = -1$ ii) -1 이 4k(k = 0, 1, 2) 개 있을 때 $\sqrt{a_1}\sqrt{a_2}\cdots \sqrt{a_{10}}$ $= \sqrt{a_1a_2\cdots a_{10}} \ i^{4k}$ = 1i), ii) 에서 ①, ① 만이 옳다. **42.** 이차방정식 $x^2 - 2ix - k = 0$ 의 근에 대한 <보기>의 설명 중 옳은 것을 모두 고르면?

- \bigcirc k > 1이면 두 근은 실근이다. \bigcirc k=1이면 두 근은 같다.
- ◎ 두 근의 곱은 실수이다.
- ② 0 < k < 1이면 두 근은 순허수이다.

④ □, □, 킅

① ⑦, ⓒ

(5) (7), (C), (E), (E)

② (C), (E) (3) (T), (C), (E)

근의 공식을 이용하여 $x^2 - 2ix - k = 0$ 의 근을 구하면 x = 0

 $i \pm \sqrt{-1+k}$ $\bigcirc k > 1$ 이어도 x 는 허수이다.<거짓>

- \bigcirc k = 1이면 x = i 로 두 근은 같다.<참> ⑤ 두 근의 곱 -k 는 허수일 수도 있다.<거짓>
- ② 0 < k < 1이면 -1 < -1 + k < 0 이므로 $\sqrt{-1 + k} = ai$ 의
- 형태가 되어 x는 순허수이다.<참>

- **43.** $x^2 + 3ax + b = 0$ 과 $x^2 ax + c = 0$ 은 공통근 1을 갖는다. 이 때, $2a^2 + b - c$ 가 최소가 되는 a의 값은 ?
 - ① -1 ② 0
- ③1 ④ 2 ⑤ 3

조건에서

해설

 $1 + 3a + b = 0 \cdots \bigcirc$ $1 - a + c = 0 \cdots \bigcirc$

 $\bigcirc - \bigcirc : 4a + b - c = 0$

 $\therefore b-c=-4a$

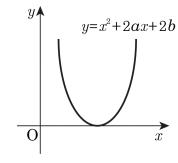
 $\therefore 2a^2 + b - c = 2a^2 - 4a = 2(a-1)^2 - 2$ 따라서 a=1일 때, 최소이다.

44.
$$a^2 - 3a + 1 = 0$$
일 때, $a^2 - 2a + \frac{3}{a^2 + 1}$ 의 값은?

 $\bigcirc 2$ 2 3 3 4 4 5 5 6

해결 $a^2 - 3a + 1 = 0 에서$ $a^2 - 2a + \frac{3}{a^2 + 1} = a - 1 + \frac{3}{3a} = a + \frac{1}{a} - 1$ 한편, $a^2 - 3a + 1 = 0$ 의 양변을 a로 나누면 $a - 3 + \frac{1}{a} = 0 \quad \therefore a + \frac{1}{a} = 3$ $\therefore (준식) = \left(a + \frac{1}{a}\right) - 1 = 2$

45. 이차함수 $y = x^2 + 2ax + 2b$ 의 그래프가 아래 그림과 같을 때, 방정식 $x^2 - 2ax + b^2 + 2 = 0$ 의 근에 대한 설명으로 옳은 것은?



- ② 서로 다른 음의 실근을 갖는다.
- ③ 중근을 갖는다.

① 서로 다른 양의 실근을 갖는다.

- ④ 서로 다른 부호의 실근을 갖는다.
- ⑤ 서로 다른 두 허근을 갖는다.

\bigcirc 그래프에서 중근이므로 $a^2-2b=0$

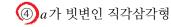
해설

- $x^2 2ax + b^2 + 2 = 0$ 판별식 $\frac{D}{4}=a^2-b^2-2 \leftarrow a^2=2b$
- $= 2b b^2 2$
= -(b^2 2b + 2) $= -(b-1)^2 - 1 < 0$
- :. 서로 다른 두 허근을 갖는다.

- **46.** a,b,c가 삼각형의 세 변의 길이를 나타낼 때, $(a+b)x^2 + 2cx + a b$ 는 x의 완전제곱식이다. 이 삼각형은 어떤 삼각형인가?
 - ① 정삼각형

② a = b인 이등변삼각형

③ b = c 인 이등변삼각형⑤ c가 빗변인 직각삼각형



a, b, c가 삼각형의 세 변의 길이이므로

a > 0, b > 0, c > 0 따라서, a + b > 0이므로 준식은 이차식이다.

따라서, *a* + *b* > 0이므로 준식 준식이 완전제곱식이 되려면

판별식 D = 0 $\frac{D}{4} = c^2 - (a+b)(a-b) = 0$

정리하면,
$$c^2 - a^2 + b^2 = 0$$

 $\therefore a^2 = b^2 + c^2$ 따라서, a가 빗변인 직각삼각형

47. 이차식 $x^2 - xy - 6y^2 + ay - 1$ 이 두 일차식의 곱으로 나타내어질 때, 양수 a의 값은?

① 1 ② 3 ③ 5 ④ 10 ⑤ 12

해설

$$x^{2} - xy - 6y^{2} + ay - 1 = 0$$
에서 근의 공식을 이용하면
$$x = \frac{y \pm \sqrt{y^{2} - 4(-6y^{2} + ay - 1)}}{2}$$
$$= \frac{y \pm \sqrt{25y^{2} - 4ay + 4}}{2}$$

일차식의 곱으로 인수분해가 되려면 $\sqrt{-}$ 안에 있는

$$= \frac{y \pm \sqrt{25y^2 - 4ay + 4}}{2}$$

$$25y^2 - 4ay + 4$$
가 완전제곱식이 되어야 한다.
즉, $25y^2 - 4ay + 4 = (5y \pm 2)^2$

 $\therefore -4a = \pm 20,$

 $a = \pm 5$

∴ 양수 a 는 5

- **48.** 방정식 $(2+3i)z+(2-3i)\bar{z}=2$ 를 만족시키는 복소수z는? (단, \bar{z} 는 z의 켤레복소수)
 - ③ 두 개뿐이다.
 - ① 존재하지 않는다. ② 한 개 있다.
 - ⑤ 서 개뿐이다.
- ④ 무수히 많이 있다.

z = a + bi (a, b 는 실수)라 놓으면,

해설

 $(2+3i)z + (2-3i)\overline{z} = 2 \text{ odd}$

(2+3i)(a+bi) + (2-3i)(a-bi) = 2

2(2a - 3b) = 2 ∴ 2a - 3b = 1 을 만족하는 실수 a, b 의 쌍은 무수히 많다.

49.
$$x = \frac{1}{2}(-1 + \sqrt{3}i)$$
 일 때 $x + \frac{1}{x + \frac{1}{x + \frac{1}{x}}}$ 의 값은?

- ① 0 ② 1
 ④ $\frac{1-\sqrt{3}i}{2}$ ③ $\frac{-5+\sqrt{3}i}{4}$

3 2

50. x에 대한 이차방정식 $2x^2-2(1-a-b)x+\left\{1+(a+b)^2\right\}=0$ 의 근이 실수일 때, $a^3+b^3-3ab+4$ 의 값을 구하면? (단, a,b는 실수)

① 1 ② 2 ③3 ④ 4 ⑤ 5

실근을 가지므로 $\frac{D}{4} = (1 - a - b)^2 - 2\left\{1 + (a + b)^2\right\}$ $= 1 - 2(a + b) + (a + b)^2 - 2 - 2(a + b)^2 \ge 0$ $\therefore (a + b)^2 + 2(a + b) + 1 \le 0$ 즉, $(a + b + 1)^2 \le 0$ 이고 a, b는 실수이므로 a + b + 1 = 0 $\therefore a + b = -1$ $\therefore a^3 + b^3 - 3ab + 4$ $= (a + b)^3 - 3ab(a + b) - 3ab + 4$ $= (-1)^3 - 3ab(-1) - 3ab + 4$ = 3