- 1. 분수함수 $y = \frac{x+b}{ax+1}$ 의 그래프의 점근선 중 하나가 x = -1 이고 점 (1, 2) 를 지난다고 한다. 이 분수함수의 정의역이 $\{x \mid -3 \le x < -1$ 또는 $-1 < x \le 1\}$ 일 때, 치역을 구하면? (단, a, b 는 상수)

 - ⑤ {y | y < 1 또는 y ≥ 2}

2. 다음 그래프 중 평행이동에 의하여 $y = \frac{1}{x}$ 의 그래프와 겹쳐지는 것은? ① $y = \frac{x+1}{x-1}$ ② $y = \frac{x}{x-1}$ ③ $y = \frac{x-2}{x-1}$ ④ $y = \frac{-x}{x-1}$ ⑤ $y = \frac{x+3}{x+1}$

$$y = \frac{1}{x - x}$$

$$y = \frac{-x}{x - x}$$

$$y = \frac{x - 1}{x + 1}$$

$$y = \frac{x + 1}{x + 1}$$

3. 평행이동 f: (x, y) → (x+m, y+n) 에 의하여 분수함수 y = x+1/x
 의 그래프가 분수함수 y = -x+3/(x-2) 의 그래프로 옮겨질 때, m-n 의 값을 구하여라.
 답: _______

4. 점 (0,1)을 지나고 점근선이 $x=-2,\ y=2$ 인 함수 $y=\frac{ax+b}{cx+d}$ 의 그래프는 다음 중 어느 것을 평행이동한 것인가?

①
$$y = -\frac{1}{x}$$
 ② $y = -\frac{2}{x}$ ③ $y = -\frac{3}{x}$
② $y = \frac{1}{x}$

- 5. $y = \frac{2}{x-1} 2$ 의 그래프에 대한 설명 중 옳지 않은 것은?
 - ① y = ²/_x 의 그래프를 x축으로 -1, y축으로 -2만큼 평행이동한 그래프이다.
 ② 치역은 R {-2} 이다.
 - ③ 제 2사분면을 지나지 않는다.
 - ④ 점근선은 *x* = 1, *y* = −2 이다.
 - ⑤ 정의역은 R {1} 이다.

최댓값을 M, 최솟값을 m 이라 한다. 이때, M+m 의 값을 구하면? ① 1 ② 2 ③ 3 ④ 4 ⑤ 5

6. $x^2 - x - 6 \ge 0$ 일 때, 함수 $y = \frac{x+2}{x-2}$ 의

7. 다음과 같은 두 집합 A, B에 대하여 $A \cap B = \emptyset$ 일때, 상수 a의 값의 범위를 구하면?

 $A = \left\{ (x, y) \mid y = \frac{|x - 1|}{x} \right\}$ $B = \left\{ (x, y) \mid y = ax \right\}$

- ① a < 0 ② a > 0 ③ 0 < a < 1
 - $\textcircled{4} \ 0 \le a \le 1$ $\textcircled{5} \ a < 0, a > 1$

8. 분수함수 $f(x) = \frac{x+3}{2x-1}$ 에 대하여 합성함수 $y = (f \circ f \circ f)(x)$ 의 그래프는 점 (a, b) 에 대하여 대칭이다. 이 때, a+b 의 값을 구하면? ① 0 ② 1 ③ 2 ④ 3 ⑤ 4

9. 무리함수 $y = \sqrt{ax + b} + c(a > 0)$ 의 정의역이 $\{ x \mid x \ge 1 \}$ 이고, 치역이 $\{y \mid y \ge 2\}$ 일 때, $\frac{2a^2 + c^2 - 2b}{2a}$ 의 최솟값을 구하면?

① $-\sqrt{2}$ ② 1 ③ $2\sqrt{2}$

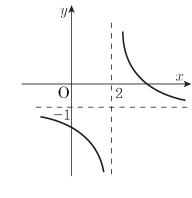
(4) $2\sqrt{2} + 1$ (5) $2\sqrt{2} + 2$

10. 무리함수 $y = \sqrt{a-x} - 1$ 의 그래프가 원점을 지나고 정의역이 $\{x\mid x\leq \alpha\}$, 치역이 $\{y\mid y\geq \beta\}$ 일 때, $a+\alpha+\beta$ 의 값을 구하면?

① -2 ② -1 ③ 0 ④ 1 ⑤ 2

- **11.** 함수 $y = \sqrt{-2x+a}$ 의 그래프를 x축의 방향으로 1만큼, y축의 방향으로 b만큼 평행이동하였더니 함수 $y = \sqrt{-2x+4} 3$ 의 그래프와 겹쳐졌다. 이 때, 상수 a, b의 값을 각각 구하여라.
 - **)** 답: a = _____

> 답: b = _____


- 12. 다음 중 함수 $y = a\sqrt{bx}$ 의 그래프가 그려지는 사분면을 옳게 나타낸 것을 고르면? (단, *ab* ≠ 0)

 - ② ab < 0 이면 제 4사분면

① ab > 0 이면 제 3사분면

- ③ a < 0, b > 0 이면 제 4사분면 ④ a > 0,b < 0 이면 제 1사분면
- ⑤ a < 0, b < 0 이면 제 2사분면

13. 분수함수 $y = \frac{b}{x+a} + c$ 의 그래프가 다음 그림과 같을 때, 무리함수 $y = \sqrt{cx+a} + b$ 의 그래프가 지나는 사분면을 모두 구하면?

- ① 제1사분면 ② 제2사분면 ③ 제3사분면
 - ④ 제4사분면 ⑤ 제1,2사분면

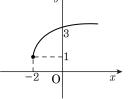
14. 함수 $y = \sqrt{2x+2} + a$ 의 그래프가 제 1 , 3 , 4 사분면을 지나도록 하는 정수 a의 최댓값을 구하여라.

답: _____

- ② $y = \sqrt{2x+4} 3$
- $y = \sqrt{2x + 6 + 6}$ $y = -\sqrt{6 2x} 1$
- ③ $y = -\sqrt{2x+3} + 3$ ④ $y = \sqrt{1-4x} + 5$

16. 함수 $y = 1 - \sqrt{2 - x}$ 의 그래프에 대한 설명 중 옳은 것은?

- ③ 정의역은 {x | x ≥ 2}이다.
 ② 치역은 {y | y ≥ 1}이다.
- ③ 그래프는 점 (-2, -1) 을 지난다.
- ④ 그래프는 $y = -\sqrt{x}$ 의 그래프를 평행이동한 것이다.
- ⑤ 그래프는 제 1, 2, 3사분면을 지난다.


17. 무리함수 $y = \sqrt{ax+b}+c$ 의 그래프가 다음 그림과 같을 때 a+b+c의 값은?

① -1

- ② 0 ⑤ 3
- 3 1

④ 2

- 18. 무리함수 $y = \sqrt{ax+b}+c$ 의 그래프가 다음 그림과 같을 때, a+b+c의 값을 구하여라.

▶ 답: _____

- **19.** $a \le x \le 1$ 일 때, $y = \sqrt{3-2x}+1$ 의 최솟값이 m, 최댓값이 6 이다. 이때, m-a 의 값을 구하여라.
 - ▶ 답: _____

20. $-4 \le x \le 1$ 에서 함수 $y = 1 - \sqrt{a - 3x}$ 의 최댓값이 0 일 때, 최솟값은? (단, *a* 는 상수이다.)

① -3 ② -2 ③ -1 ④ 0 ⑤ 1

21. $-\frac{1}{3} \le x \le \frac{8}{3}$ 에서 함수 $y = \sqrt{3x+a} + 2$ 의 최댓값이 b , 최솟값이 2 일 때, a+b 의 값을 구하여라.

▶ 답: ____

- **22.** $8 \le x \le a$ 에서 함수 $y = -\sqrt{x+1} + 3$ 의 최댓값이 b , 최솟값이 -1 일 때, a+b 의 값을 구하여라.
 - ▶ 답: ____

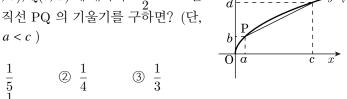
23. x에 대한 방정식 $\sqrt{2x} = m(x+1)$ 이 서로 다른 두 실근을 가질 때, 상수 m의 값의 범위는 $\alpha < m < \beta$ 이다. 이때, $\alpha^2 + \beta^2$ 의 값을 구하면?

① $\frac{1}{4}$ ② $\frac{1}{2}$ ③ 1 ④ $\frac{3}{4}$ ⑤ 2

24. 무리함수 $y = \sqrt{kx}$ 의 그래프가 두 점 (2, 2), (3, 6)을 잇는 선분과 만나도록 하는 정수 k의 개수를 구하여라.

답: _____ 개

- **25.** x > 2에서 정의된 두 함수 f(x), g(x)가 $f(x) = \sqrt{x-2} + 2$, $g(x) = \frac{1}{x-2} + 2$ 일 때 $(f \cdot g)(3) + (g \cdot f)(3)$ 의 값을 구하여라.
 - 답: _____


26. 무리함수 $y = \sqrt{x-a} + 1$ 에 대하여 $f^{-1}(2) = 3$ 일 때, 상수 a의 값을 구하면?

① 1 ② 2 ③ 3 ④ 4 ⑤ 5

27. 정의역이 $\{x\mid x>1\}$ 인 두 함수 $f(x)=\frac{1}{x+1},\ g(x)=\sqrt{3(x-1)}$ 에 대하여 $(f\circ g)^{-1}\left(\frac{1}{4}\right)$ 의 값은?

① 2 ② 4 ③ 6 ④ 8 ⑤ 10

28. 함수 $y = \sqrt{x}$ 의 그래프 위의 두 점 P(a, b), Q(c, d) 에 대하여 $\frac{b+d}{2} = 1$ 일 때, 직선 PQ 의 기울기를 구하면? (단, 0 < a < c)

① $\frac{1}{5}$ ② $\frac{1}{4}$ ③ $\frac{1}{3}$ ④ $\frac{1}{2}$ ⑤ 1

29. 함수 $y = \frac{2x+5}{x+1}$ 의 그래프가 직선 y = ax+b에 대하여 대칭일 때, a-b의 값은? (단, a<0)

① -4 ② -3 ③ -2 ④ -1 ⑤ 0

30. 다음 중 함수 $y = \frac{x+6}{x+3}$ 의 그래프는 제a사분면을 지나지 않고, 점 (0, b)를 지난다고 할 때, a-b의 값은?

① -6 ② -4 ③ 0 ④ 2 ⑤ 4

31. 함수 $y = \frac{ax+b}{x+c}$ 의 그래프가 다음과 같을 때, a+b+c의 값은?

① 1 ② 2 ③ 3 ④ 4 ⑤ 5

 $\frac{1}{-2}$

32. $0 \le x \le 2$ 일 때, 함수 $y = \frac{2x-4}{x-4}$ 의 최댓값을 M, 최솟값을 m이라 한다. Mm의 값은? ① -2 ② -1 ③ 0 ④ 1 ⑤ 2

33. 함수 $f(x) = \frac{ax+b}{x+c}$ 의 역함수가 $f^{-1}(x) = \frac{2x-4}{-x+3}$ 일 때, 함수 y=|x+a|+b+c의 최솟값은?

① 3 ② 4 ③ 5 ④ 6 ⑤ 7