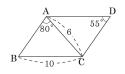


2. 다음 그림과 같은 평행사변형의 넓이를 구하면?



① 30 ② $30\sqrt{2}$ ③ $30\sqrt{3}$ ④ $32\sqrt{2}$ ⑤ $32\sqrt{3}$

(평행사변형 ABCD 의 넓이)
$$= \frac{1}{2} \times 10 \times 6 \times \sin 45^{\circ} \times 2$$

$$= \frac{1}{2} \times 10 \times 6 \times \frac{\sqrt{2}}{2} \times 2$$

$$= 30\sqrt{2}$$

- 3. 다음 한 원과 직선에 대한 설명 중 잘못된 것은?
 - ① 크기가 같은 두 중심각에 대한 현의 길이와 호의 길이는 각각 같다.
 - ② 중심에서 현에 내린 수선은 그 현을 이등분한다.
 - ③ 길이가 같은 현은 원의 중심에서 같은 거리에 있다.
 - ④ 중심으로부터 같은 거리에 있는 현의 길이는 같다.
 - ⑤ 현의 이등분선은 그 원의 중심을 지난다.

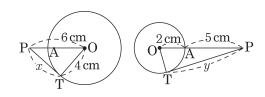
- 해설

이등분선이 그 현의 수직이등분선일 때, 원의 중심을 지날 수 있다. . 다음 그림에서 직선 PT, PT'은 원 O 의 접선이고, ∠TOT' = 140°일 때, ∠TPO 의 크기는?

$$\triangle POT \equiv \triangle POT \cdot (RHS 합동)$$

$$\therefore x = \frac{1}{2} (180^{\circ} - 140^{\circ}) = 20^{\circ}$$

5. 다음 그림에서 \overline{PT} 는 원 O 의 접선일 때, xy 의 값은?



$$\angle T = 90^{\circ}$$
 이므로
 $x = \sqrt{6^2 - 4^2} = 2\sqrt{5} \text{ (cm)}$
 $\angle T = 90^{\circ}$ 이므로
 $y = \sqrt{7^2 - 2^2} = 3\sqrt{5} \text{ (cm)}$
 $\therefore xy = 2\sqrt{5} \times 3\sqrt{5} = 30$

해설

다음 그림에서 원 O 는 ∠C = 90° 인 직각삼 각형 ABC 의 내접원이고, 점 D, E, F 는 접점 이다. BE = 6cm, EC = 3cm 일 때, AB 의 길이 는?

6.

해설
$$\overline{BD} = \overline{BE} = 6 \text{cm}, \overline{EC} = \overline{FC} = 3 \text{cm} \ \text{이코} \ \overline{AD} = \overline{AF} = x \text{cm} \ \text{라 하면}$$
 직각삼각형의 피타고라스 정리에 의해서
$$\overline{AB}^2 = \overline{BC}^2 + \overline{AC}^2$$

$$(x+6)^2 = 9^2 + (x+3)^2$$

$$\therefore x = 9$$
 따라서 $\overline{AB} = 15 \text{cm} \ \text{이다}.$

∠x의 크기는? ① 110°

② 120° 140°

③ 130° ⑤ 150°

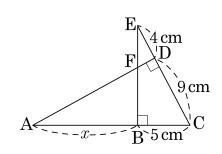
다음 그림에서 점 T가 원 O의 접점일 때,

70°

 $\angle ABT = 70^{\circ}$ $\angle AOT = 2\angle ABT$ $\therefore x = 140^{\circ}$

해설

8. 다음 그림에서 $\overline{AC}\bot\overline{EB}$, $\overline{AD}\bot\overline{CE}$, $\overline{BC}=5$ cm, $\overline{CD}=9$ cm, $\overline{DE}=4$ cm 일 때, \overline{AB} 의 길이를 구하여라.



$$ightharpoonup$$
 정답: $x = 18.4 \underline{\text{cm}}$

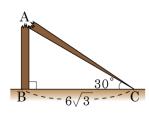
$$9 \times (9+4) = 5 (5+x)$$

117 = 25 + 5x, 5x = 92, x = 18.4 (cm)

9. 다음 그림과 같은 직사각형 모양의 널판지 ABCD 가 수평면에 대하여 45° 만큼 기울어져 있다. 이 때, 직 사각형 EBCF 의 넓이는? 45° E C

 $\overline{\mathrm{BE}} = 8 \times \cos 45^{\circ} = 4\sqrt{2},$ 넓이= $4\sqrt{2} \times 12 = 48\sqrt{2}$

10. 지면의 수직으로 서 있던 나무가 다음 그 림과 같이 부러졌다. 이때, 부러지기 전의 나무의 높이를 구하여라.



$$\overline{AB} = 6\sqrt{3}\tan 30^\circ = 6\sqrt{3} \times \frac{1}{\sqrt{3}} = 6$$
 이다.

또한,
$$\overline{AC} = \frac{6\sqrt{3}}{\cos 30^{\circ}} = \frac{6\sqrt{3}}{\frac{\sqrt{3}}{2}} = 12$$
 이다.

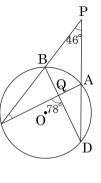
따라서 부러지기 전의 나무의 높이는 $\overline{AB}+\overline{AC}=6+12=18$ 이다.

AD 의 연장선의 교점을 P 라 하자. ∠CQD = 78°,∠APC = 46°일 때, ∠ACB 의 크기는?

해섴

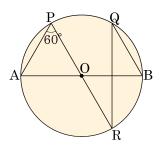
11. 다음 그림에서 네 점 A, B, C, D 는 원 O 위의 점

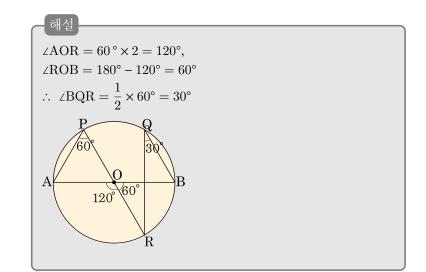
이고, \overline{AC} 와 \overline{BD} 의 교점을 Q, \overline{BC} 의 연장선과



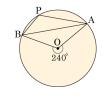
 $\angle BCQ = \angle BDA = \angle x$ 라고 하면 $\triangle ACP$ 에서 $\angle CAD = \angle x + 46^\circ$ 이다. $\triangle AQD$ 에서 한 외각의 크기는 이웃하지 않는 두 내각의 합이므로 $x + (x + 46^\circ) = 78^\circ$ 이다.

12. 다음 그림에서 ĀB 는 원 O 의 지름이다. ∠APR = 60° 일 때, ∠BQR 의 크기를 구하여라.



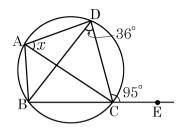


13. 다음 그림에서 ∠AOB = 240° 이고, 5.0ptPA : 5.0ptPB = 2 : 1 일 때, ∠PAB 의 크기는?



$$5.0 ext{ptPA} : 5.0 ext{ptPB} = 2 : 1$$
 이므로 $\angle PAB = \angle x$ 라고 하면, $\angle PBA = 2\angle x$, $\angle APB = 120^\circ$ 이므로 $\angle x + 2\angle x = 60^\circ$
 $\therefore \angle x = 20^\circ$

14. 다음 그림에서 $\angle x$ 의 값을 구하여라.



▶ 답:

정답: 59 °

해설

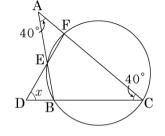
∠BAC = ∠BDC = 36° (호 BC 의 원주각) 사각형 ABCD 는 원에 내접하므로

 $\angle BAD = \angle DCE$

 $36^{\circ} + \angle x = 95^{\circ}$ $\therefore \ \angle x = 59^{\circ}$

15. 다음 그림에서 □EBCF 는 원에 내접하고 ∠BAC = 40°, ∠BCA = 40°일 때, ∠FDC 의 값을 구하면?

① 45° ② 50° ③ 55°
④ 60° ⑤ 65°



해설

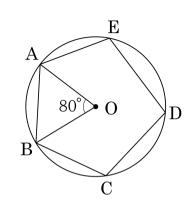
∠BEF = 140° (∵ ∠ACB 의 대각) 이고, ∠DBE = 80° 이다.

△DBE 에서 한 외각의 크기의 합은 이웃하지 않는 두 내각의
크기의 합과 같으므로

140° = x° + 80

∴ x° = 60°

16. 다음 그림과 같이 원 O 에 내접하는 오각형 ABCDE 에서 ∠AOB = 80°일 때, ∠C + ∠E 의 크기를 구하여라.



답:

➢ 정답: 220°

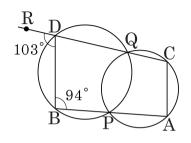
해설

점 A 와 점 C 를 연결하면 \angle ACB = $\frac{1}{2} \times 80^{\circ} = 40^{\circ}$

또 \Box ACDE 는 원에 내접하므로 \angle E + \angle ACD = 180°

$$\therefore \angle C + \angle E = 40^{\circ} + 180^{\circ} = 220^{\circ}$$

17. 다음 그림에서 ∠A 의 크기로 적절한 것을 고르면?



① 84°

② 85°

③ 85.5°

4)86°

⑤ 87°

해설

 $\angle PQD = 180^{\circ} - 94^{\circ} = 86^{\circ}$ $\therefore \angle A = \angle PQD = 86^{\circ}$ 18. 다음 그림과 같은 △ABC 에서 한 변의 길이를 30% 줄이고 다른 한 변의 길이는 늘여서 새로운 삼각형 A'BC' 를 만들었더니 그 넓이는 줄고 △AA'D 와 △CC'D 의 넓이의 차가 △ABC 의 넓이의 ¹/₈ 이었다. 늘인 한 변은 몇 % 늘였는지 구하여라.
 답:

해설

$$\overline{AB} = x$$
 , $\overline{BC} = y$ 라 하고 \overline{BC} 의 길이를 $a\%$ 늘였다면 $(\triangle ABC$ 의 넓이 $) = \frac{1}{2}xy\sin B$

 $(\triangle ABC - \triangle A'BC') = (\triangle AA'D - \triangle CC'D)$

 $(\triangle A'BC' 의 넓이) = \frac{1}{2}xy\sin B \times \frac{7}{8}$

$$= \triangle AA'D + \Box A'BCD \cdots \bigcirc$$

$$(\triangle A'BC' 의 넓이) = \frac{1}{2} \times \frac{7}{10} x \times \frac{(100+a)}{100} y \times \sin B$$

$$(\triangle A'BC') = \frac{1}{2} \times \frac{1}{10} \times \frac{1}{100} \times \sin B$$

= $\triangle CC'D + \Box A'BCD \cdots \Box$
①- \Box 을 하면

$$= \frac{1}{2}xy\sin B \times \frac{1}{8}$$

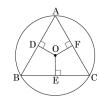
$$= \frac{1}{2}xy\sin B \times \left(\frac{7}{10} \times \frac{100 + a}{100}\right)$$

파라서 $\frac{7}{8} = \frac{700 + 7a}{1000}$

 $\begin{array}{ccc}
8 & 1000 \\
7000 - 5600 = 56a & \therefore a = 25
\end{array}$

따라서 25% 늘였다.

19. 다음 그림과 같은 원 O에서 $\overline{OD} = \overline{OE} = \overline{OF}$ 이고 $\overline{AB} = 4\sqrt{3}$ 일 때, 원 O 의 넓이를 구하여라.



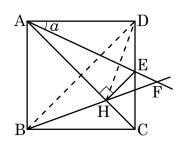
▷ 정답: 16π

$$\overline{OD} = \overline{OE} = \overline{OF}$$
 이므로 $\overline{AB} = \overline{BC} = \overline{CA}$
 $\triangle ABC$ 가 정삼각형이므로 \overline{AB} : $\overline{AE} = 2$: $\sqrt{3}$
 $\overline{AE} = \frac{\sqrt{3}}{2} \times 4\sqrt{3} = 6$

$$\overline{OA} = \frac{2}{3}\overline{AE} = \frac{2}{3} \times 6 = 4 \text{ (cm)}$$
(원의 넓이)= $\pi \times (4)^2 = 16\pi$

$$(4)^2 = 16\pi$$

20. 정사각형 ABCD 의 변 CD 위의 점 E 에서 대각선 AC 에 내린 수선의 발을 H , 두 선분 AE 와 BH 의 연장선이 만나는 점을 F 라고 하고 $\angle DAE = a$ 라고 할 때, $\angle EHF$ 의 크기를 구하여라.



① $5a^{\circ}$

② $4a^{\circ}$ ③ $3a^{\circ}$ ④ $2a^{\circ}$

해설

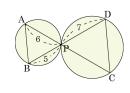
$$\angle$$
AHE = \angle ADE = 90° 이므로 네 점 A, H, E, D 는 한 원 위에 있다. 따라서 호 5.0ptDE 에 대한 원주각은 모두 같으므로, \angle DAE = \angle DHE = a 이다.

 $\overline{\mathrm{BD}}//\overline{\mathrm{HE}}$ 이므로

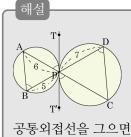
 $\angle BDC = \angle HEC = 45^{\circ}, \angle DHE = \angle HDB$ 또한. $\overline{HD} = \overline{HB}$ 이므로 $\angle HBD = \angle HDB = a$

 \therefore /EHF = /HDB = a

21. 다음 그림과 같이 점 P 에서 접하는 두 원에 대하여 $\overline{AP} = 6$, $\overline{BP} = 5$, $\overline{DP} = 7$ 일 때, \overline{PC} 의 길이는?



① 6 ② $\frac{16}{3}$ ③ $\frac{12}{5}$ ④ $\frac{42}{5}$ ⑤ 7



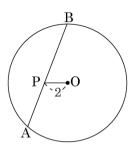
 $\angle ABP = \angle APT$, $\angle APT = \angle T'PC$ (맞짝지간), $\angle TPC = \angle PDC$ $\therefore \angle ABP = \angle CDP$

또한 ∠BAP = ∠DCP, ∠ABP = ∠CDP 이므로 △PAB ~ △PCD (AA 닮음)

따라서, $\overline{PA} : \overline{PC} = \overline{PB} : \overline{PD}$ 이므로 $6 : \overline{PC} = 5 : 7$ 이다.

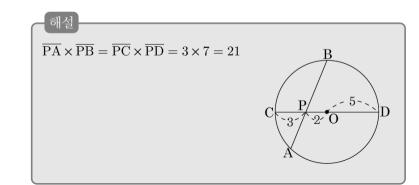
 $\therefore \overline{PC} = \frac{42}{5}$

22. 다음 그림과 같이 반지름의 길이가 5인 원 O의 현 AB위에 점 P가 있다. $\overline{OP} = 2$ 일 때, $\overline{PA} \times \overline{PB}$ 의 값을 구하여라.

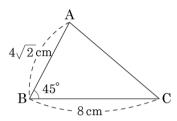


▶ 답:

➢ 정답: 21



23. 다음 삼각형 ABC 의 넓이를 구하여 라.



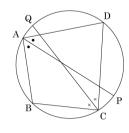
답:

> 정답: 16 cm²

삼각형 ABC 의 높이를 h 라고 하면 $h=4\sqrt{2}\times\sin 45^\circ=4$ cm 따라서 넓이는 $8\times4\times\frac{1}{2}=16$ cm² 이다.

 cm^2

24. 다음 그림과 같이 반지름의 길이가 $3 \mathrm{cm}$ 인 원에 사각형 ABCD 가 내접하고 있다. $\angle A$, $\angle C$ 의 이등분선과 원과의 교점을 각각 P, Q 라 할 때, $5.0 \mathrm{pt} 24.88 pt$ QDP 의 길이를 구하여라.



cm

▷ 정답: 3π cm

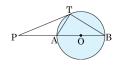
단:

В • 3// <u>СП</u>

```
∠BAD + ∠BCD = 180° 이므로
∠PAD + ∠DCQ = 90°
```

$$\begin{array}{l} \therefore \ \ 5.0 \mathrm{pt} 24.88 pt \widehat{\mathrm{QDP}} = 5.0 \mathrm{pt} \widehat{\mathrm{QD}} + 5.0 \mathrm{pt} \widehat{\mathrm{DP}} = (2\pi \times 3) \div 2 = 3\pi (\mathrm{\,cm}) \end{array}$$

25. 다음 그림에서 선분 PT 는 원의 접선이고, $\overline{PA} = 4$, $\overline{PB} = 9$, $\overline{TA} = 3$ 일 때, 삼각형 ATB 의 넓이를 구하여라.



답

$$ightharpoonup$$
 정답: $\frac{27}{4}$

$$\overline{PT}^2 = \overline{PA} \cdot \overline{PB} = 4 \times 9 = 36$$
 : $\overline{PT} = 6$
또 삼각형 PTA 와 PBT 에서 $\angle P$ 는 공통.

또 심걱형 PTA 와 PBT 에서 ZP 는 등등, ZPTA = ZPBT 이므로, 두 삼각형은 닮은 도형이다.

$$\therefore \overline{BT} = \frac{9 \times 3}{6} = \frac{9}{2}$$

$$\therefore \triangle ATB = \frac{1}{2} \times 3 \times \frac{9}{2} = \frac{27}{4}$$