
다음 그림에서 $\overline{\mathrm{AD}}//\overline{\mathrm{EF}}//\overline{\mathrm{BC}}$ 일 때, $x,\ y$ 의 값을 각각 구하면? 1.

③ x = 30, y = 30

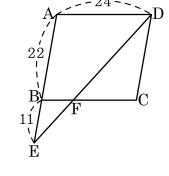
① x = 30, y = 33

 \bigcirc x = 20, y = 334 x = 20, y = 30

⑤ x = 20, y = 35

해설

 $\overline{\operatorname{EB}} = \overline{\operatorname{FC}}$ 이므로 $x \leftarrow \overline{\operatorname{AE}}$ 와 같은 20 이다.


 $y \leftarrow \overline{AE} : \overline{EB} = 2 : 3 을 이용$ 점 A 와 점 C 를 연결할 때 $\overline{\text{EF}}$ 와 만나 생긴 교점을 G 라고 하자.

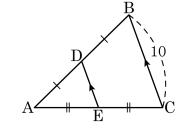
 $\overline{AE}:\overline{AB}=2:5$, $\overline{AE}:\overline{AB}=\overline{EG}:\overline{BC}$ $2:5=\overline{\mathrm{EG}}:45\ \therefore\ \overline{\mathrm{EG}}=18$

 $\overline{CF}:\overline{CD}=3:5$, $\overline{CF}:\overline{CD}=\overline{FG}:\overline{AD}$

 $3:5=\overline{\mathrm{FG}}:25\ \therefore\ \overline{\mathrm{FG}}=15$ $\therefore \overline{EF} = 18 + 15 = 33$

 ${f 2}$. 다음 그림의 평행사변형 ABCD 에서 ${f AB}$ 와 ${f DF}$ 의 연장선과의 교점을 E 라고 할 때, \overline{CF} 의 길이를 구해라.

▷ 정답: 16


답:

 $\triangle \text{BEF} \hookrightarrow \triangle \text{CDF}$ 이므로 $\overline{\text{CF}} = x$ 라 하면

 $\overline{\mathrm{BE}}:\overline{\mathrm{CD}}=\overline{\mathrm{BF}}:\overline{\mathrm{CF}}$ 11:22 = (24 - x):x

 $\therefore x = 16$

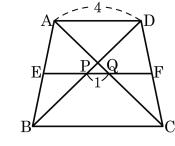
3. 다음 그림의 $\triangle ABC$ 에서 $\overline{AD}=\overline{DB}$, $\overline{AE}=\overline{EC}$, $\overline{BC}=10$ 일 때, $\overline{BC}+\overline{DE}$ 의 길이는?

① 11

② 12

③ 13

④ 14


③15

 \overline{AB} , \overline{AC} 의 중점이 D, E 이므로

 $\overline{\mathrm{DE}} = \frac{1}{2} \times \overline{\mathrm{BC}} = \frac{1}{2} \times 10 = 5$ 이다.

 $\frac{2}{\text{따라서 }\overline{\mathrm{DE}} + \overline{\mathrm{BC}}} = 5 + 10 = 15$ 이다.

 $\overline{AD}//\overline{BC}$ 인 사다리꼴 ABCD에서 \overline{AB} 와 \overline{DC} 의 중점이 각각 E , F 이고, $\overline{AD}=4$, $\overline{PQ}=1$ 일 때, \overline{BC} 의 길이는? 4.

① 5

3 7 4 8

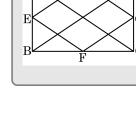
⑤ 9

점 E 와 F 가 중점이므로

해설

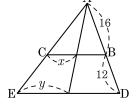
 $\overline{\mathrm{QF}}:\overline{\mathrm{AD}}=1:2, \overline{\mathrm{QF}}=\overline{\mathrm{EP}}=2$ 이다. $\overline{\mathrm{EQ}}:\overline{\mathrm{BC}}=1:2$ 이므로

3: x = 1:2


 $\therefore x = 6$

따라서 $\overline{\mathrm{BC}}=6$ 이다.

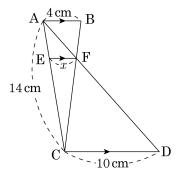
- 5. 다음 중 직사각형의 각 변의 중점을 차례로 이어서 만든 사각형으로 가장 적당한 것은?
 - ④ 마름모
 ⑤ 정사각형
- - ① 등변사다리꼴 ② 평행사변형 ③ 직사각형


다음 그림의 직사각형 ABCD 에서 대각선 AC 를 그으면 \triangle ABC 와 \triangle ADC 에서 삼각형의 중점연결 정리에 의하여 $\overline{\mathrm{EF}} = rac{1}{2}\overline{\mathrm{AC}}, \overline{\mathrm{HG}} = rac{1}{2}\overline{\mathrm{AC}}$ 한편, 대각선 BD 를 그으면 $\triangle\mathrm{ABD}$ 와 $\Delta {
m CDB}$ 에서 삼각형의 중점연결 정리에 의하여 $\overline{
m EH}=rac{1}{2}\overline{
m BD}$, $\overline{\mathrm{FG}} = rac{1}{2}\overline{\mathrm{BD}}\ \overline{\mathrm{AC}} = \overline{\mathrm{BD}}$ 이므로 $\overline{\mathrm{EF}} = \overline{\mathrm{FG}} = \overline{\mathrm{GH}} = \overline{\mathrm{HE}}$ 따라서,

□EFGH 는 네 변의 길이가 모두 같으므로 마름모이다.

6. 다음과 같은 삼각형 ABC 에서 $\overline{\rm DE}$ 는 $\overline{\rm BC}$ 와 평행이다. $\frac{4y}{x}$ 의 값은?

① 8 ② 7 ③ 6 ④ 5 ⑤ 4



16: (16+12) = x: y

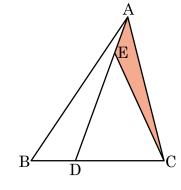
28x = 16y

$$\therefore \frac{4y}{x} = \frac{4 \times 28}{16} = 7$$

오른쪽 그림에서 $\overline{AB}//\overline{EF}//\overline{DC}$ 이 7. $\overrightarrow{AB} = 4 \text{ cm}, \overrightarrow{AC} = 14 \text{ cm}, \overrightarrow{CD} = 14 \text{ cm}$ $10\,\mathrm{cm}$ 일 때, x의 값을 구하여라.

▶ 답:

ightharpoonup 정답: $\frac{20}{7}\,\mathrm{cm}$

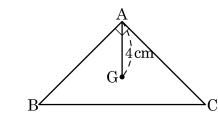

△AFB∽△DFC이므로

 $\overline{\mathrm{AB}}:\overline{\mathrm{CD}}=\overline{\mathrm{AF}}:\overline{\mathrm{FD}}=4:10=2:5$ $\therefore \overline{\rm AF}: \overline{\rm AD} = 2:7$

 $\overline{\mathrm{AF}}:\overline{\mathrm{AD}}=2:7$ 이므로

 $\overline{\text{EF}} : \overline{\text{CD}} = 2 : 7, \ x : 10 = 2 : 7$ $\therefore \ x = \frac{20}{7} (\text{cm})$

8. $\triangle ABC$ 의 넓이가 $240~\mathrm{cm^2}$ 이고 $\overline{BD}:\overline{DC}=1:2,\overline{AE}:\overline{ED}=1:3$ 일 때, $\triangle AEC$ 의 넓이를 구하면?



 $\boxed{3}40\,\mathrm{cm}^2$

- ① $30 \,\mathrm{cm}^2$ ④ $42 \,\mathrm{cm}^2$
- ② $36 \,\mathrm{cm}^2$ ③ $46 \,\mathrm{cm}^2$
- $(5) 46 \, \text{cm}^2$

 $\triangle AEC = \frac{1}{4} \times \triangle ADC$ $= \frac{1}{4} \times \frac{2}{3} \times \triangle ABC$ $= \frac{1}{6} \times \triangle ABC$ $= \frac{1}{6} \times 240 = 40 \text{ (cm}^2\text{)}$

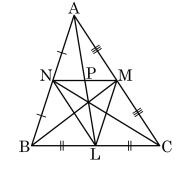
그림에서 $\angle A=90$ ° 인 직각삼각형 ABC의 무게중심을 G라 한다. 9. $\overline{\mathrm{AG}}=4\mathrm{cm}$ 일 때, $\overline{\mathrm{BC}}$ 의 길이는?

① 6cm

② 8cm

 $310 \mathrm{cm}$

412cm

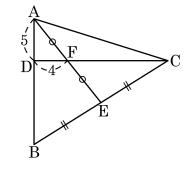

⑤ 16cm

해설 점 A 에서 무게중심 G 를 지나는 직선이 \overline{BC} 와 만나는 점을 D

라고 하면, $\overline{\mathrm{AG}}:\overline{\mathrm{GD}}=2:1$ 이므로, $2:1=4:\overline{\mathrm{GD}},\ \overline{\mathrm{GD}}=2(\mathrm{cm}),$

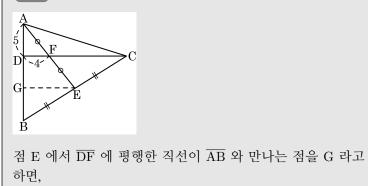
 $\overline{AD} = \overline{AG} + \overline{GD} = 6(cm)$ $\overline{\mathrm{AD}} = \overline{\mathrm{BD}} = \overline{\mathrm{CD}}$ 이므로 $\overline{\mathrm{BC}} = 12 (\mathrm{cm})$ 이다.

10. 다음 그림과 같은 $\triangle ABC$ 의 변 BC, CA, AB의 중점을 각각 L, M, N 이라 하고, \overline{AL} 과 \overline{MN} 의 교점을 P라고 할 때, 다음 중 옳지 <u>않은</u> 것은?


 $\bigcirc \overline{PN} = \overline{MP}$

① $\overline{\mathrm{ML}} = \overline{\mathrm{AN}}$

- ④ △ABC와 △LMN의 무게중심이 일치한다.
- ③□NLCM 은 마름모이다.

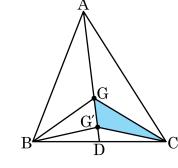

⑤ $\overline{\mathrm{NL}}=\overline{\mathrm{MC}},$ $\overline{\mathrm{NM}}=\overline{\mathrm{LC}}$ 이므로 마름모가 아니다.

11. 다음 그림에서 $E \leftarrow \overline{BC}$ 의 중점이고 $F \leftarrow \overline{AE}$ 의 중점이다. $\overline{FC} + \overline{DB}$ 의 길이를 구하시오.

답:

 ▷ 정답: 22

i) $\overline{GE} = 2\overline{DF} = 8$ $\overline{DC} = 2\overline{EG} = 16$


 $\therefore \overline{FC} = 2EG = 16$ $\therefore \overline{FC} = 16 - 4 = 12$ $\vdots \quad \overline{AD} \cdot \overline{DC} = \overline{AF} \cdot \overline{C}$

 $| ii \rangle \overline{AD} : \overline{DG} = \overline{AF} : \overline{FE}$ 이므로, $\overline{DG} = 5$

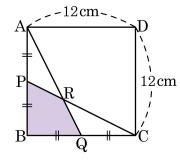
 $\overline{\mathrm{DG}}:\overline{\mathrm{GB}}=\overline{\mathrm{EC}}:\overline{\mathrm{BE}}$ 이므로, $\overline{\mathrm{DB}}=10$ $\therefore \overline{\mathrm{FC}}+\overline{\mathrm{DB}}=22$ 이다.

... 10 | DB = 22 | |-|.

12. 다음 그림에서 점 G, G' 은 각각 $\triangle ABC$, $\triangle GBC$ 의 무게중심이다. $\triangle GG'C$ 의 넓이가 $6cm^2$ 일 때, $\triangle ABC$ 의 넓이를 구하여라.

 $4 52 \text{cm}^2$

 \bigcirc 46cm²


- 248cm^2
- \bigcirc 54cm²

 $3 50 \text{cm}^2$

 $3\triangle GG'C = \triangle GBC = \frac{1}{3}\triangle ABC$

 $\therefore \triangle ABC = 9 \triangle GG'C = 9 \times 6 = 54 (\text{ cm}^2)$

 ${f 13.}$ 다음 그림과 같은 정사각형 ABCD 에서 두 변 AB, BC 의 중점을 각각 P ,Q 라 하고 \overline{AQ} 와 \overline{PC} 의 교점을 R 라 할 때, □PBQR 의 넓이는?

- $\textcircled{1} \ \ 20 \mathrm{cm}^2$ 4 26cm^2
- 22cm^2 \bigcirc 28cm²
- 324cm^2

 ΔABC 에서, 점 R 은 두 중선의 교점이므로 점 R.은 ΔABC 의무게중심이므로 \overline{CR} : $\overline{RP}=2$: 1 $\triangle PBC = \frac{1}{2} \times 6 \times 12 = 36 (cm^2)$

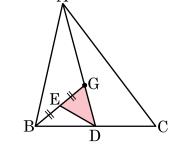
$$\triangle RBC = \frac{2}{3} \times 36 = 24(cm^2)$$

$$\Delta RQC = \frac{1}{3} \times 30 = 24(\text{cm}^2)$$

$$\Delta RQC = \frac{1}{2} \times 24 = 12(\text{cm}^2)$$

$$\therefore \Box PBQR = \triangle PBC - \triangle RQC = 36 - 12 = 24(cm^2)$$

14. 다음 그림에서 $\overline{\mathrm{AD}}$ 는 $\Delta \mathrm{ABC}$ 의 한 중선이다. $\triangle ACD = 16 \, \mathrm{cm^2}$ 일 때, $\overline{\mathrm{AH}}$ 의 길이를 구하여라.


▶ 답:

ightharpoonup 정답: $\frac{16}{3}\,\mathrm{cm}$

 $\triangle ACD = \frac{1}{2} \triangle ABC$ 이므로 $\triangle ABC = 2 \triangle ACD = 2 \times 16 = 32 \text{(cm}^2\text{)}$

따라서 $\triangle ABC = \frac{1}{2} \times \overline{BC} \times \overline{AH} = \frac{1}{2} \times 12 \times \overline{AH} = 32$ $\therefore \overline{AH} = \frac{16}{3} \text{ (cm)}$

15. 다음 그림에서 점 G는 $\triangle ABC$ 의 무게중심이고, $\overline{EB}=\overline{EG}$ 이다. $\triangle ABC$ 의 넓이가 $24cm^2$ 일 때, $\triangle GDE$ 의 넓이를 구하여라.

 $\underline{\mathrm{cm}^2}$

 ▷ 정답:
 2 cm²

▶ 답:

 $\triangle GBD = \frac{1}{6} \triangle ABC = 4(\text{ cm}^2)$

GE : EB = 1 : 1 이므로

 $\triangle GDE = \frac{1}{2} \triangle GBD = 2(\text{cm}^2)$ 이다.