
다음 그림에서 □ABCD ♡ □A′B′C′D′ 일 때, Ā′B′ 의 길이는? 1.

- ① 5cm ④ 7cm
- ② 5.5cm $\bigcirc \frac{15}{2} \text{cm}$
- $\ \ \, 3~6\mathrm{cm}$

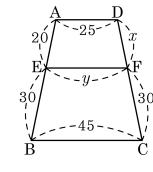
두 닮은 평면도형에서 대응하는 변의 길이의 비는 일정하므로 12:9=10:x $\therefore \ x=\frac{90}{12}=\frac{15}{2}$

$$\therefore x = \frac{36}{12} =$$

2. 다음 그림에서 $\angle {\rm BAC}=\angle {\rm ADC}=90\,^\circ$, $\overline{\rm AC}=15{\rm cm}$, $\overline{\rm CD}=9{\rm cm}$ 일 때, x 의 길이를 구하여라.

15cm

<u>cm</u>


▷ 정답: 16 cm

 $\overline{AC}^2 = \overline{BC} \cdot \overline{CD}$ $15^2 = 9(9+x)$

225 = 81 + 9x144 = 9x

144 = 9x $\therefore x = 16 \text{ cm}$

다음 그림에서 $\overline{\mathrm{AD}}//\overline{\mathrm{EF}}//\overline{\mathrm{BC}}$ 일 때, $x,\ y$ 의 값을 각각 구하면? **3.**

③ x = 30, y = 30

① x = 30, y = 33

 \bigcirc x = 20, y = 334 x = 20, y = 30

3 x = 20, y = 35

 $\overline{\operatorname{EB}} = \overline{\operatorname{FC}}$ 이므로 $x \leftarrow \overline{\operatorname{AE}}$ 와 같은 20 이다.

 $y \leftarrow \overline{AE} : \overline{EB} = 2 : 3 을 이용$ 점 A 와 점 C 를 연결할 때 $\overline{\mathrm{EF}}$ 와 만나 생긴 교점을 G 라고 하자.

 $\overline{AE}:\overline{AB}=2:5$, $\overline{AE}:\overline{AB}=\overline{EG}:\overline{BC}$

 $2:5=\overline{\mathrm{EG}}:45\ \therefore\ \overline{\mathrm{EG}}=18$ $\overline{CF}:\overline{CD}=3:5$, $\overline{CF}:\overline{CD}=\overline{FG}:\overline{AD}$

 $3:5=\overline{\mathrm{FG}}:25\ \therefore\ \overline{\mathrm{FG}}=15$ $\therefore \overline{EF} = 18 + 15 = 33$

- 4. 6에서 15까지의 수가 적힌 카드에서 한 장의 카드를 뽑을 때, 그 카드의 수가 10보다 큰 수가 나오는 경우의 수를 구하면?
 - ① 5가지 ② 6가지 ③ 7가지 ④ 8가지
 - ④ 8가지 ⑤ 10가지

해설

10 초과 15 이하의 수는 11, 12, 13, 14, 15로 5가지이다.

- 5. 2개의 주사위를 동시에 던질 때, 두 눈의 합이 3의 배수가 되는 경우의 수는?
- ① 6가지 ② 8가지 ③ 10가지
- ④12가지⑤ 14가지

두 눈의 합이 3인 경우:

해설

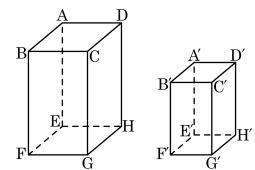
 $(1, 2), (2, 1) \Rightarrow 2(7)$

두 눈의 합이 6인 경우:

 $(1,\ 5),\ (2,\ 4),\ (3,\ 3),\ (4,\ 2),\ (5,\ 1)\Rightarrow 5(7)$ 두 눈의 합이 9인 경우:

 $(3, 6), (4, 5), (5, 4), (6, 3) \Rightarrow 4(7)$

두 눈의 합이 12인 경우 : (6, 6) ⇒ 1(가지) $\therefore 2+5+4+1=12 (7)$


- **6.** 숫자 1, 2, 3…, 20을 각각 써 놓은 카드 중에서 임의로 한 장을 뽑을 때, 3의 배수 또는 8의 배수가 나오는 경우의 수는?
 - ① 5가지 ② 6가지 ③ 7가지 ④ 8가지 ⑤ 9가지

해설

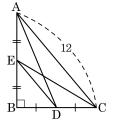
로 2가지이다. 따라서 3의 배수 또는 8의 배수가 나오는 경우의 수는 6+2=8(가지)이다.

3의 배수는 3, 6, 9, 12, 15, 18로 6가지이고 8의 배수는 8 , 16

7. 다음 두 직육면체가 서로 닮음이고 □BFGC 와 □B'F'G'C' 가 서로 대응하는 면일 때, □C'G'H'D' 와 대응하면 면은?

- \bigcirc \square ABFE
- ③□CGHD

□C'G'H'D' 에 대응하는 면은 □CGHD 이다.

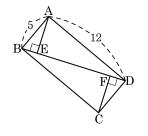

- 다음 그림과 같이 직사각형 모양의 종이를 대 8. 각선 AC 를 접는 선으로 하여 접었다. $\overline{\mathrm{AD}'}$ 와 \overline{BC} 의 교점을 E 라하고 점 E 에서 대각선 AC 에 내린 수선의 발을 F 라고 할 때, x 의 길이는?

 $\angle {
m CAD}$ 는 접힌 부분이므로 같다. 따라서 두 삼각형은 ${
m AA}$ 닮음이 다. $\triangle AFE$ 와 $\triangle ADC$ 의 닮음비가 10:16 이므로 5:8=x:20이다.

 Δ AFE 와 Δ ADC 에서 \angle EFA 와 \angle CDA 는 90° 로 같고, \angle EAF 와

 $\therefore x = \frac{25}{2}$

9. 다음 그림에서 $\angle B=90\,^\circ$ 이고, D, E 는 각각 \overline{BC} , \overline{AB} 의 중점이다. $\overline{AC}=12$ 일 때, $\overline{AD}^2+\overline{CE}^2$ 의 값을 구하여라.

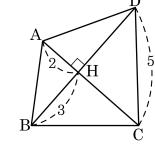


▶ 답:

▷ 정답: 180

 $\overline{\mathrm{BE}}=x,\overline{\mathrm{BD}}=y$ 라고 하면 $\triangle\mathrm{ABC}$ 에서 $12^2=(2x)^2+(2y)^2,x^2+y^2=36$ $\overline{\mathrm{AD}}^2 = (2x)^2 + y^2, \overline{\mathrm{CE}}^2 = x^2 + (2y)^2$ 이므로 $\overline{AD^2} + \overline{CE}^2 = 5x^2 + 5y^2$ $= 5(x^2 + y^2)$ $=5 \times 36$ = 180

10. 다음 그림과 같은 직사각형 ABCD 에서 점 A 와 점 C 가 대각선 BD에 이르는 거리의 합을 구하면?

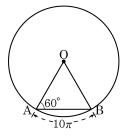

- ① $\frac{118}{13}$ ② $\frac{119}{13}$

해설 $\triangle ABD$ 에서 $\overline{BD}=13$

 $5 \times 12 = 13 \times \overline{AE}, \ \overline{AE} = \frac{60}{13}$

따라서 $\overline{AE} = \overline{CF}$ 이므로 $\overline{AE} + \overline{CF} = \frac{60}{13} + \frac{60}{13} = \frac{120}{13}$ 이다.

11. 다음 그림의 $\square ABCD$ 에서 대각선 AC 와 BD 는 서로 직교하고 있다. 대각선의 교점을 H 라 하고 $\overline{AH}=2$, $\overline{BH}=3$, $\overline{CD}=5$ 일 때, $\overline{AD^2}+\overline{BC^2}$ 의 값을 구하여라.



➢ 정답: 38

▶ 답:

 $\overline{AB}^2 + \overline{DC}^2 = \overline{AD}^2 + \overline{BC}^2 = (2^2 + 3^2) + 5^2 = 38$ $\therefore \overline{AD}^2 + \overline{BC}^2 = 38$

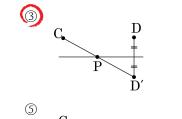
12. 다음 그림과 같이 $\angle OAB = 60^{\circ}$ 인 부채꼴 OAB 에서 $\widehat{AB} = 10\pi$ 일 때, \overline{AB} 의 길이를 구하여라.

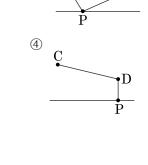
답:▷ 정답: 30

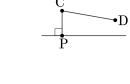
△OAB 는 이등변삼각형이므로

 $\angle AOB = 60^{\circ} \bigcirc \boxed{\exists},$

 $2\pi \times \overline{OA} \times \frac{60^{\circ}}{360^{\circ}} = 10\pi, \ \overline{OA} = 30$

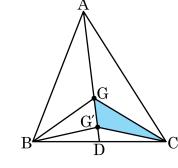

점 O 에서 \overline{AB} 에 내린 수선의 발을 H 라하면


 $\overline{OA} : \overline{AH} = 2 : 1$ $\overline{AH} = 15$


 $\therefore \overline{AB} = 2\overline{AH} = 30$

13. 다음 그림에서 $\overline{\mathrm{CA}} \bot \overline{\mathrm{AB}}$, $\overline{\mathrm{DB}}$ \bot $\overline{\mathrm{AB}}$ 이고, 점 P 는 $\overline{\mathrm{AB}}$ 위 를 움직일 때 $\overline{\mathrm{CP}} + \overline{\mathrm{PD}}$ 의 최단 거리를 구하는 방법으로 옳은 것 은? A^{\square}

AB 에 대한 점 D의 대칭점 D'을 잡고 선분 CD' 가 $\overline{\mathrm{AB}}$ 와 만나는 점을 P로 잡는다.


14. 1부터 4까지의 숫자가 각각 적혀 있는 네 장의 카드를 사용하여 네 자리의 정수를 만들 때, 작은 수부터 16번째 수는 무엇인지 구하여라.

답:

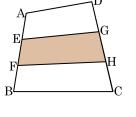
▷ 정답: 3241

1 ☐ ☐ ☐ 의 경우의 수는 3×2×1 = 6(가지)
2 ☐ ☐ 의 경우의 수는 3×2×1 = 6(가지)
3 ☐ ☐ 의 경우의 수는 3×2×1 = 6(가지)
천의 자리의 숫자가 1, 2, 3인 경우의 수는 18가지 이다.
이 때, 3으로 시작하는 가장 큰 수 3421 이 18번 째 숫자이므로
17번 째 숫자는 3412, 16번 째 숫자는 3241 이다.

15. 다음 그림에서 점 G, G' 은 각각 $\triangle ABC$, $\triangle GBC$ 의 무게중심이다. $\triangle GG'C$ 의 넓이가 $6cm^2$ 일 때, $\triangle ABC$ 의 넓이를 구하여라.

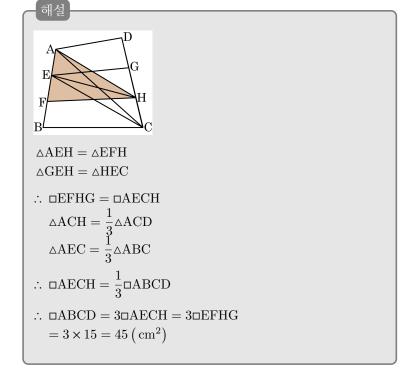
 $4 52 \text{cm}^2$

 \bigcirc 46cm²


- ② 48cm^2 ③ 54cm^2

 $3 50 \text{cm}^2$

 $3\triangle GG'C = \triangle GBC = \frac{1}{3}\triangle ABC$


 $\therefore \triangle ABC = 9\triangle GG'C = 9 \times 6 = 54 \text{(cm}^2\text{)}$

16. 다음 그림과 같은 사각형 ABCD 에서 점 E, F,G, H는 각각 AB, DC 의 삼등분점이다. □EFHG = 15 cm² 일 때, □ABCD 의 넓이를 구하여라.

정답: 45 cm²

▶ 답:

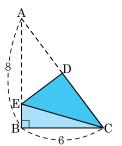
 $\underline{\mathrm{cm}^2}$

- **17.** 세 변의 길이가 각각 a, 2a-1, 2a+1 인 삼각형 ABC 가 둔각삼각형일 때, a 의 값의 범위를 결정하면?

 - ① 2 < a < 4 ② 0 < a < 4 $\textcircled{4} \ 0 < a < 8$ $\textcircled{5} \ 4 < a < 8$
- 3 2 < a < 8

해설

 $x^2 > y^2 + z^2$ 이 성립하면 둔각삼각형이다.


a는 삼각형의 한 변이므로 a>0 이고, 2a+1 이 가장 긴 변이다. $(2a+1)^2 > a^2 + (2a-1)^2$ $a^2 - 8a < 0$, a(a - 8) < 0

a > 0 이므로 양변을 a 로 나누면 a - 8 < 0 $\therefore a < 8$ 또, 삼각형이 되려면 (가장 긴 변의 길이) < (나머지 두 변 길이의

따라서 2 < a < 8

합) 이므로 2a+1 < a+2a-1 .: a>2

18. 다음 그림과 같이 $\angle B$ 가 직각인 직각삼각형이 고 \overline{DE} 를 접선으로 점 A 가 점 C 와 겹쳐지 도록 접었을 때, ΔCDE 의 넓이와 ΔECB 의 넓이의 합을 구하여라.

▶ 답:

ightharpoonup 정답: $rac{117}{8}$

$\overline{\mathrm{EB}} = x$ 라 두면 $\overline{\mathrm{AE}} = \overline{\mathrm{EC}} = 8 - x$ 이고

ΔEBC 가 직각삼각형이므로 $(8-x)^2 = x^2 + 6^2, x = \frac{7}{4}$ 이코,

 ΔABC 가 직각삼각형이므로 $\overline{AC}^2=8^2+6^2,\ \overline{AC}=10$ 이다. ΔADE 가 직각삼각형이므로

 $\overline{\rm DE}^2 = \left(\frac{25}{4}\right)^2 - 5^2, \ \overline{\rm DE} = \frac{15}{4}$ 이다. Δ EDC 의 넓이는 $\frac{1}{2} \times 5 \times \frac{15}{4} = \frac{75}{8}$ 이고,

 \triangle EBC 의 넓이는 $\frac{1}{2} \times \frac{7}{4} \times 6 = \frac{21}{4}$ 이다.

따라서 합은 $\frac{75}{8} + \frac{21}{4} = \frac{117}{8}$ 이다.

19. 실제 거리가 $400 \,\mathrm{m}$ 인 두 지점 사이의 거리를 $2 \,\mathrm{cm}$ 로 나타내는 지도가 있다. 이 지도에서 실제 넓이가 $20\,\mathrm{km}^2$ 인 땅의 넓이를 구하여라.

▶ 답: $\overline{\mathrm{cm}^2}$ 정답: 500 <u>cm²</u>

해설

(축척) = 2:40000 = 1:20000(넓이의 비) = 1² : 20000² = 1 : 400000000

1:400000000 = x:2000000000000 $x=500~\left(\,\mathrm{cm}^2\right)$

20. 자연수 x , y 가 짝수일 확률이 각각 $\frac{1}{3}$, $\frac{3}{7}$ 이다. x+y 가 홀수일 확률을 구하여라.

▶ 답:

 ▷ 정답:
 \frac{10}{21}

해설
$$\frac{1}{3} \times \left(1 - \frac{3}{7}\right) + \left(1 - \frac{1}{3}\right) \times \frac{3}{7}$$

$$= \frac{1}{3} \times \frac{4}{7} + \frac{2}{3} \times \frac{3}{7}$$

$$= \frac{4}{21} + \frac{6}{21} = \frac{10}{21}$$