
다음 그림과 같이 $\angle B=60^\circ$, $\angle C=45^\circ$ 인 $\triangle ABC$ 에서 $\overline{AH} \bot \overline{BC}$ 이고, $\overline{AB}=8 \mathrm{cm}$ 일 때, \overline{AC} 의 길이는? 1.

- \bigcirc 4cm 4 8cm
- ② $4\sqrt{3}$ cm \bigcirc 8 $\sqrt{6}$ cm
- $34\sqrt{6}$ cm

해설

 $\triangle ABH$ 에서 $\sin 60^\circ = \frac{\overline{AH}}{\overline{AB}} = \frac{\overline{AH}}{8} = \frac{\sqrt{3}}{2}, \overline{AH} = 4\sqrt{3}$ (cm) 이므로 \triangle AHC 에서 $\sin 45^\circ = \frac{\overline{AH}}{\overline{AC}} = \frac{4\sqrt{3}}{x} = \frac{\sqrt{2}}{2}, x = 4\sqrt{6}$ (cm) 이다.

 $\sin 0^\circ \times \tan 0^\circ - \cos 0^\circ$ 의 값을 A , $\sin 90^\circ \times \cos 90^\circ + \tan 0^\circ$ 의 값을 **2**. B 라 할 때, B – A 의 값은?

해설

- ① -2 ② -1 ③ 0 ④ 1
- ⑤ 2

 $A = 0 \times 0 - 1 = -1$, $B = 1 \times 0 + 0 = 0$ 이므로 B - A = 0 - (-1) = 1

- 다음 중 옳지 <u>않은</u> 것은? (단, A, B 는 예각이다.) **3.**
 - $2 1 - 2\sin^2 A = 2\cos^2 A - 1$

 - $(\sin A + \cos A)^2 + (\sin A - \cos A)^2 = 2$

해설

- ② $1 2\sin^2 A = 1 2(1 \cos^2 A) = 2\cos^2 A 1$
- $4 \tan A + \frac{1}{\tan A} = \frac{\sin A}{\cos A} + \frac{\cos A}{\sin A}$ $= \frac{\sin^2 A + \cos^2 A}{\sin A \cos A}$ $= \frac{1}{\sin A \cos A}$
- $= 1 + 2\sin A\cos A + 1 2\sin A\cos A = 2$

 $(\sin A + \cos A)^2 + (\sin A - \cos A)^2$

- 직선 ℓ 은 x 축과 양의 방향으로 60° 를 이루는 직선과 평행하고, (-6,4)**4.** 를 지날 때, 직선 ℓ 의 방정식을 구하면?
 - ① $y = 3x + 4\sqrt{3}$ ② $y = \sqrt{3}x + 4$ $3 y = 3\sqrt{3}x + 4$
- $y = \sqrt{3}x + 6\sqrt{3} + 4$

x 축과 양의 방향으로 60° 를 이루는 직선과 평행하므로 기울

- 기= $\tan 60^\circ = \sqrt{3}$ 이다. 점 (-6,4) 를 지나므로 $y=\sqrt{3}(x+$ $(6) + 4, y = \sqrt{3}x + 6\sqrt{3} + 4$ 이다.

- 5. 다음 중 옳지 <u>않은</u> 것을 골라라. (단, $0^{\circ} \le A \le 90^{\circ}$)
 - ① A 값이 커지면 sinA 의 값도 커진다.② A 값이 커지면 cos A 의 값은 작아진다.
 - © A 값이 커지면 tan A 의 값도 커진다.
 - ② $\sin A$ 의 최솟값은 0 , 최댓값은 1 이다.
 - ① $\tan A$ 의 최솟값은 0, 최댓값은 1 이다.
 - 답:

▷ 정답: □

⑤ $\tan A$ 의 최솟값은 $\tan 0^\circ = 0$ 이지만 $\tan 90^\circ$ 의 값은 정할 수 없으므로 $\tan A$ 의 최댓값은 알 수 없다.

6. $\sin(2x+30^\circ)=\cos(3y-45^\circ)$ 일 때, 4x-y 의 값을 구하면? (단, $0^\circ < x < 30^\circ,\ 15^\circ < y < 45^\circ$)

① 0° ② $\frac{15}{2}^{\circ}$ ③ 18° ④ 30° ⑤ 45°

 $\sin x = \cos x$ 인 $x = 45^\circ$ 이다. 따라서 $2x + 30^\circ = 45^\circ, 3y - 45^\circ = 45^\circ$ $x = \frac{15}{2}, y = 30$ 이다. 따라서 $4x - y = 30^\circ - 30^\circ = 0^\circ$ 이다.

7. 다음 삼각비의 표를 보고 주어진 다음을 만족하는 $\angle x$ 와 $\angle y$ 에 대하여 $\angle x + \angle y$ 의 크기를 구하여라. 각도 sin cos tan

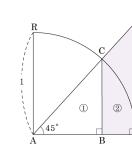
.—			
14°	0.2419	0.9703	0.2493
15°	0.2588	0.9659	0.2679
16°	0.2756	0.9613	0.2867
17°	0.2924	0.9563	0.3057
18°	0.3090	0.9511	0.3249
19°	0.3256	0.9455	0.3443
20°	0.3420	0.9397	0.3640
21°	0.3584	0.9336	0.3839

 $\tan y = 0.3640$ $\sin x = 0.2588$

▶ 답: ▷ 정답: 35 º

 $\sin 15^{\circ} = 0.2588$ 이므로 x = 15 이고, $\tan 20 = 0.3640$ 이므로 y = 20 이다.

해설


따라서 $\angle x + \angle y = 15^{\circ} + 20^{\circ} = 35^{\circ}$ 이다.

- 8. 다음 그림과 같이 \overline{AB} 를 지름으로 하 는 반원 O 위의 점 C 에서 \overline{AB} 에 내린 수선의 발을 D 라고 하고, $\angle DCB = \theta$, $\overline{AD} = \frac{16}{3}$, $\overline{BD} = 3$ 일 때, $\cos \theta$ 의 값은?
 - - $\overline{AC}=x$ 라 하면, $\triangle ABC$ 와 $\triangle ACD$ 는 닮음이다. $x:\frac{16}{3}=\frac{25}{3}:x$ $\therefore x=\frac{20}{3}$

$$x: \frac{}{3} = \frac{}{3}:$$
$$\therefore x = \frac{20}{3}$$

$$\angle DCB = \angle CAB$$
 이므로 $\cos \theta = \frac{\frac{20}{3}}{\frac{25}{3}} = \frac{4}{5}$ 이다.

9. 다음 그림의 부채꼴 APR는 반지름의 길이가 1 이고 중심각의 크기가 90° 이다. ①과 ② 부분의 넓이를 구한 후 ②- ①의 값은?

- ① -2 ② -1

- ⑤ 2

$$\triangle ABC$$
 에서 $\overline{AC}=1, \angle A=45^\circ$ 이므로 $\overline{AB}=\cos 45^\circ=\frac{\sqrt{2}}{2}$, $\overline{BC}=\sin 45^\circ=\frac{\sqrt{2}}{2}$

$$DC = \sin 40 = -$$

$$\Delta$$
APQ 에서 $\overline{AP}=1$, $\angle A=45^\circ$ 이므로 $\overline{AQ}=\frac{1}{\cos 45^\circ}=\frac{1}{\frac{\sqrt{2}}{2}}=\frac{\sqrt{2}}{2}$ $\sqrt{2}$, $\overline{PQ}=\tan 45^\circ=1$ 빗금친 부분의 넓이= Δ APQ 의 넓이- Δ ABC 의 넓이

$$\triangle APQ$$
 의 넓이= $\frac{1}{2} \times (1 \times 1) = \frac{1}{2}$

$$\triangle ABC$$
의 넓이= $\frac{1}{2} \times \left(\frac{\sqrt{2}}{2} \times \frac{\sqrt{2}}{2}\right) = \frac{1}{4} \cdots ①$

.. 빗금친 부분의 넓이=
$$\frac{1}{2} - \frac{1}{4} = \frac{2}{4} - \frac{1}{4} = \frac{1}{4} \cdots$$
 ② ... ②- ①= $\frac{1}{4} - \frac{1}{4} = 0$

10. $\sqrt{(\cos A - \sin A)^2} + \sqrt{(\sin A + \cos A)^2} = \sqrt{3}$ 일 때, $\tan A$ 의 값을 구하여라. (단, 45 ° < A < 90 °)

▶ 답:

▷ 정답: √3

해설

 $45^{\circ} < A < 90^{\circ}$ 에서 $\sin A > \cos A > 0^{\circ}$ 므로 (준식) = $-(\cos A - \sin A) + (\sin A + \cos A)$

(준식) = $-(\cos A - \sin A) + (\sin A + \cos A)$ = $2\sin A = \sqrt{3}$ 즉, $\sin A = \frac{\sqrt{3}}{2}$ 에서 $\angle A = 60$ °

 $\therefore \tan A = \tan 60^{\circ} = \sqrt{3}$