

① 10 ②5 ③
$$5\sqrt{2}$$
 ④ $10\sqrt{2}$ ⑤ 20

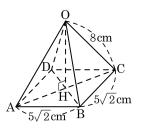
$$\triangle ABC$$
 는 이등변삼각형이므로 $\overline{AC}=\overline{BC}$ 이다.

 $\overline{AB} : \overline{BC} = \sqrt{2} : 1$ $\overline{AB} : 5\sqrt{2} = \sqrt{2} : 1$

 $5\sqrt{2} \times 5\sqrt{2} \times \frac{1}{2} = 10 \times \overline{CD} \times \frac{1}{2}$ 이므로 $\overline{CD} = 5$ 이다.

다음 중 원점 O(0,0) 와의 거리가 가장 먼 점은? (3)C(2, 3) ① A(-1, -2) ② B(1, -1)(4) D($\sqrt{2}$, 1) (5) E(-2, -1) 해설 ① $\sqrt{5}$ \bigcirc $\sqrt{2}$ ③ $\sqrt{13}$ $4\sqrt{3}$ ⑤ $\sqrt{5}$

3. 다음 그림과 같이 밑면은 한 변의 길이가 $5\sqrt{2}$ cm 인 정사각형이고 옆면의 모서리는 8cm 인 사각뿔이 있다. 이 사각뿔의 높이와 부피를 각각 바르게 구한 것은?



- ① $\sqrt{39}$ cm, $\frac{5\sqrt{39}}{3}$ cm³
 ③ $\sqrt{39}$ cm, $\frac{50\sqrt{39}}{3}$ cm³
 ⑤ $3\sqrt{13}$ cm, $\frac{50\sqrt{39}}{3}$ cm³

②
$$3\sqrt{13}$$
cm, $50\sqrt{39}$ cm³

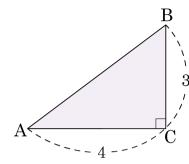
 $\sqrt{39}$ cm, $50\sqrt{39}$ cm³

밑면이 정사각형이므로 밑면의 대각선의 길이는 10cm 가 된다. <u>CH</u> 는 대각선길이의 반이므로

 $\overline{OH} = \sqrt{8^2 - 5^2} = \sqrt{39} (cm)$

$$V = \frac{1}{3} \times (5\sqrt{2})^2 \times \sqrt{39} \times = \frac{50\sqrt{39}}{3} (cm^3)$$

4. 삼각형 ABC 는 \angle C = 90° 인 직각삼각형이다. $\overline{AC}=4, \overline{BC}=3$ 일 때, 다음 설명 중 옳은 것은?



①
$$\sin A = \frac{4}{5}$$
 ② $\cos A = \frac{3}{4}$ ③ $\tan A = \frac{4}{3}$ ④ $\sin B = \frac{3}{5}$

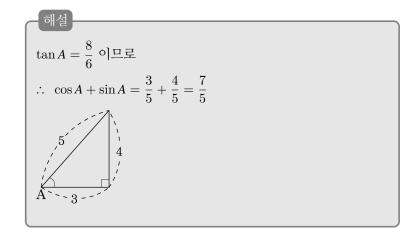
지B =
$$\sqrt{4^2 + 3^2} = \sqrt{25} = 5$$
① $\sin A = \frac{3}{5}$
② $\cos A = \frac{4}{5}$
③ $\tan A = \frac{3}{4}$
④ $\sin B = \frac{4}{5}$

5. $\tan A = \frac{4}{3}$ 일 때, $\cos A + \sin A$ 의 값은? (단, 0° < A < 90°)

$$\bigcirc \frac{7}{5}$$

②
$$\frac{8}{5}$$
 3 $\frac{3}{8}$

$$4 \frac{5}{8}$$



6. 다음 삼각비의 값 중에서 가장 큰 것은?

① sin 0°

 $3 \cos 45^{\circ}$

(4) sin 30°

⑤ tan 45°

- $2 \cos 30^\circ = \frac{\sqrt{3}}{2}$
- $3 \cos 45^\circ = \frac{1}{\sqrt{2}} = \frac{\sqrt{2}}{2}$
- $(3) \sin 30^\circ = \frac{1}{2}$
- $\Im \tan 45^{\circ} = 1$

비율에 의해 결정된다. 다음 중 경사도와 가장 관계가 깊은 것은?

(2) cos A

경사면의 기울어진 정도를 나타내는 경사도는 수평거리와 수직거리의

sin A

tan A

해설 수평거리와 수직거리의 비율은 직각삼각형에서 밑변과 높이의 비율로 생각할 수 있으므로 tan A 와 가장 관계가 깊다. 8. 다음 그림과 같이 대각선의 길이가 3√2 인 정사각 형 안에 내접하는 원이 있다. 이 때, 색칠한 부분의 넓이는?

① $3\pi - 3\sqrt{2}$

② $3 - \frac{3}{2}\pi$

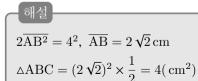
- (3) $9 \frac{9}{4}\pi$ (5) $3 - \frac{1}{2}\pi$
 - 해설

대각선의 길이가
$$3\sqrt{2}$$
 인 정사각형의 한 변의 길이는 3 이고, 한 변의 길이는 내접원의 지름과 같으므로 원의 반지름의 길이는 $\frac{3}{2}$ 이다.

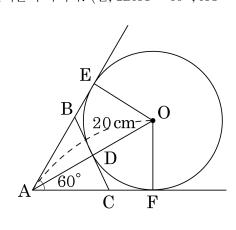
따라서 색칠한 부분의 넓이는 정사각형의 넓이에서 원의 넓이를

뺀 것과 같으므로 3 × 3 − 3 × 3 × π − 0 − 9 π c

$$3 \times 3 - \frac{3}{2} \times \frac{3}{2} \times \pi = 9 - \frac{9}{4} \pi$$
 이다.



10. 다음 그림과 같이 반직선 AE, AF 가 원 O 의 접선일 때, 삼각형 ABC 의 둘레의 길이를 구하여라. (단, ∠BAC = 60°, ĀO = 20 cm)



cm

> **정답**: 20 √3 cm

 $2\overline{AE} = 2 \times 10 \sqrt{3} = 20 \sqrt{3} \text{ (cm)}$

답:

11. 세 점 A (0, 2), B (-3, 1), C (2, -3)을 꼭짓점으로 하는 △ABC 는 어떤 삼각형인가?

① 직각삼각형

③ 둔각삼각형

② 예각삼각형

④ 이등변삼각형

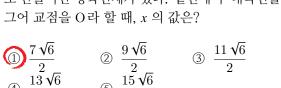
⑤ 직각이등변삼각형

해설
$$\overline{AB} = \sqrt{(0+3)^2 + (2-1)^2} = \sqrt{10}$$

$$\overline{BC} = \sqrt{(-3-2)^2 + (1+3)^2} = \sqrt{41}$$

 $\overline{\text{CA}} = \sqrt{(0-2)^2 + (2+3)^2} = \sqrt{29}$ BC 가 가장 긴 변이다.

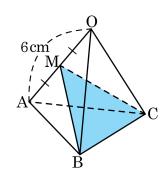
BC 가 가장 긴 면이다. $\overline{BC}^2 > \overline{AB}^2 + \overline{CA}^2$ 이므로 둔각삼각형이다.



해설
$$x = \sqrt{7^2 + \left(\frac{7\sqrt{2}}{2}\right)^2} = \sqrt{49 + \frac{98}{4}} = \sqrt{\frac{294}{4}} = \frac{7\sqrt{6}}{2}$$

13. 다음 정사면체에서 \overline{OA} 의 중점이 M 이고 $\overline{OA} = 6$ cm 일 때, $\triangle MBC$

의 넓이를 구하면?



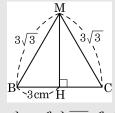
 $49 \sqrt{2} \text{cm}^2$

(1) $6\sqrt{2}\text{cm}^2$ (2) $7\sqrt{2}\text{cm}^2$ (3) $8\sqrt{2}\text{cm}^2$

 $5 10 \sqrt{2} \text{cm}^2$

해설

 $\overline{\text{MB}} = \overline{\text{MC}} = 3\sqrt{3}(\text{cm})$



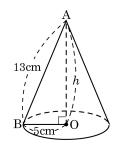
점 M 에서 \overline{BC} 에 내린 수선의 발을 H 라 하면

 $\overline{\text{MH}} = \sqrt{(3\sqrt{3})^2 - 3^2} = \sqrt{27 - 9} = \sqrt{18} = 3\sqrt{2} \text{(cm)}$

(\triangle MBC의 넓이) = $\frac{1}{2} \times 6 \times 3\sqrt{2} = 9\sqrt{2} \text{(cm}^2)$

, 모선의 길이가 13 cm 인 원뿔이 있다. 원뿔의 높이 h 와 부피 V 모두 바르게 구한 것은?

14. 다음 그림과 같이 밑면의 반지름의 길이가 $5 \, \text{cm}$



③ $11 \, \text{cm}$, $120 \pi \, \text{cm}^3$

① $10 \,\mathrm{cm}$, $100 \pi \,\mathrm{cm}^3$

 $5 12 \, \text{cm}, 120 \pi \, \text{cm}^3$

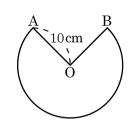
$$\overline{13^2 - 5^2} = \sqrt{144} = 12$$
(cm) 이다.

② $11 \, \text{cm}$, $100 \pi \, \text{cm}^3$

 $12 \, \mathrm{cm} \, , \, 100 \, \mathrm{cm}^3$

원뿔의 높이는 $\sqrt{13^2 - 5^2} = \sqrt{144} = 12$ (cm) 이다. 원뿔의 부피는 $\frac{1}{3} \times \pi \times 5^2 \times 12 = 100\pi (\text{cm}^3)$ 이다.

15. 다음 그림에서 호 AB 의 길이는 16π cm , $\overline{OA} = 10$ cm 이다. 이 전개 도로 고깔을 만들 때, 고깔의 부피는?



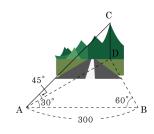
- ① $24\pi \text{cm}^3$ ② $36\pi \text{cm}^3$ $3 54\pi \text{cm}^3$ $128\pi\mathrm{cm}^3$

 $4 84\pi \text{cm}^3$

해설

밑면의 반지름을
$$r$$
라 하면 $16\pi=2\pi r, \ r=8$ 높이는 $\sqrt{10^2-8^2}=6(\,\mathrm{cm})$ 이다. 따라서 고깔의 부피는 $\pi\times8^2\times6\times\frac{1}{3}=128\pi(\,\mathrm{cm}^3)$ 이다.

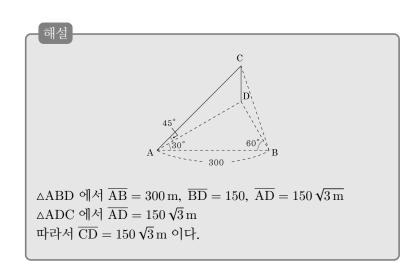
16. 다음 그림에서 $\overline{AB} = 300 \mathrm{m}$ 이고, A 지점에서 산의 꼭대기 C 지점을 쳐다본 각이 45° 일 때, 산의 높이 \overline{CD} 를 구하면?



- ① $150\sqrt{3}$ m
- ② $150\sqrt{2}$ m
- ③ 150m

 $4 300 \sqrt{3} \text{m}$

⑤ 300m



 \bigcirc 6 $\sqrt{3}$ cm

 $4 6\sqrt{2}$ cm

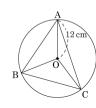
지표 =
$$\frac{16}{\tan(90^\circ - 60^\circ) + \tan(90^\circ - 30^\circ)}$$

$$= \frac{16}{\tan 30^\circ + \tan 60^\circ}$$

$$= \frac{16}{\frac{16}{\sqrt{3}} + \sqrt{3}} = \frac{16}{\frac{4\sqrt{3}}{3}}$$

$$= \frac{12}{\sqrt{3}} = 4\sqrt{3}(cm)$$

18. 다음 그림과 같이 \triangle ABC 가 반지름이 12cm 인 원 O 에 내접하고 있다. 5.0ptÂB, 5.0ptBC, 5.0ptCA 의 길이의 비가 4 : 3 : 5 일 때, ΔΑΟC 의 넓이를 구하면?



 32 cm^2

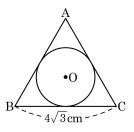
①
$$24 \,\mathrm{cm}^2$$
 ② $28 \,\mathrm{cm}^2$
④ $36 \,\mathrm{cm}^2$ ⑤ $40 \,\mathrm{cm}^2$

① $24 \, \text{cm}^2$

্নাপ্র
$$\angle AOC = 360^{\circ} \times \frac{5}{4+3+5} = 150^{\circ}$$

$$\Delta AOC = \frac{1}{2} \times 12 \times 12 \times \sin (180^{\circ} - 150^{\circ})$$
$$= \frac{1}{2} \times 12 \times 12 \times \sin 30^{\circ}$$
$$= \frac{1}{2} \times 12 \times 12 \times \frac{1}{2}$$
$$= 36 \text{ (cm}^{2})$$

19. 다음 그림과 같이 한 변의 길이가 $4\sqrt{3}$ cm 인 정삼각형에 원 O 가 내접하고 있다. 이 내접원의 넓이를 구하여라.

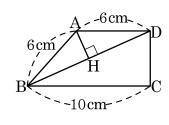


$$ightharpoonup$$
 정답: $4\pi \,\mathrm{cm}^2$

정삼각형의 한 변의 길이가 $4\sqrt{3}$ cm 이므로, 높이는 $\frac{\sqrt{3}}{2} \times 4\sqrt{3} = 6$ (cm) 내접원의 중심은 삼각형의 무게중심과 일치하므로 높이를 2:1로 내분한다.

 cm^2

그러므로 반지름의 길이는 $6 \times \frac{1}{3} = 2 \text{ (cm)}$ 따라서 내접원의 넓이는 $2^2\pi = 4\pi \text{ (cm}^2 \text{)}$ **20.** 다음 그림과 같은 $\square ABCD$ 에서 $\overline{AB} = \overline{AD} = 6cm$, $\overline{BC} = 10cm$, $\angle C = \angle D = 90^\circ$ 이고, 점 A 에서 \overline{BD} 에 내린 수선의 발을 H 라 할 때, \overline{AH} 의 길이를 구하여라.



cm

 답:

 ▷ 정답:
 √6 cm

점 A 에서
$$\overline{BC}$$
 에 내린 수선의 발을 I 라 하면
$$\overline{A} = \overline{A} = \overline{A}$$

$$\overline{BI} = 4 \text{cm}, \ \overline{AI} = \sqrt{36 - 16} = 2\sqrt{5} \text{cm}$$

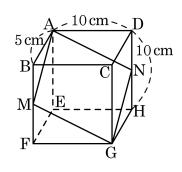
$$\overline{DC} = 2\sqrt{5} \text{cm}$$

$$\overline{BD} = \sqrt{10^2 + (2\sqrt{5})^2} = \sqrt{120} = 2\sqrt{30} \text{cm}$$

$$\overline{AB} = \overline{AD} = \overline{BH} = \overline{HD} = \sqrt{30} \text{cm}$$

 $\therefore \overline{AH} = \sqrt{6^2 - (\sqrt{30})^2} = \sqrt{6} (cm)$

21. 다음 그림과 같은 직육면체에서 BF 의 중점을 M, DH 의 중점을 N 이라 할 때. □AMGN 의 넓이를 구하여라.



답: <u>cm²</u>

정답: 75 cm²

해설

$$\Box AMGN = 2\triangle AMN$$
 $\overline{AM} = \sqrt{5^2 + 5^2} = 5\sqrt{2} \text{ (cm)}$ $\overline{AN} = \sqrt{10^2 + 5^2} = 5\sqrt{5} \text{ (cm)}$ $\triangle AMN 은 \overline{AN} = \overline{MN}$ 인 이동변삼각형이다.

□AMGN 은 평행사변형이므로

$$\overline{NI} = \sqrt{\overline{AN}^2 - \overline{AI}^2}$$

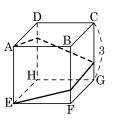
$$= \sqrt{(5\sqrt{5})^2 - \left(\frac{5\sqrt{2}}{2}\right)^2} = \frac{15\sqrt{2}}{2} (cm)$$

$$(\Box AMGN의 넓이) = 2 \times (\triangle AMN의 넓이)$$

= $2 \times \frac{1}{2} \times \overline{AM} \times \overline{NI}$
= $5\sqrt{2} \times \frac{15\sqrt{2}}{2}$

 $= 75 (cm^2)$

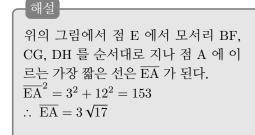
22. 다음 그림과 같은 정육면체의 한 꼭짓점 E 에서 모서리 BF, CG, DH 를 순서대로 지나 점 A 에 이르는 선 중에서 가장 짧은 선의 길이를 구하 여라.



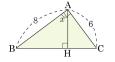
 \mathbf{H}

▶ 답:

ightharpoonup 정답: $3\sqrt{17}$



23. 다음 그림에 대하여 $\sin x + \cos x$ 의 값을 구하여라.



ightharpoonup 정답: $\frac{7}{5}$

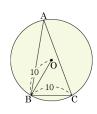
 $\overline{BC} = \sqrt{6^2 + 8^2} = 10$ 이다.

직각삼각형 ABC 와 직각삼각형 HBA 는 서로 AA 닮음이므로 ∠BAH = ∠ACH 이다.

따라서 $\sin x = \frac{4}{5}$, $\cos x = \frac{3}{5}$ 이고, $\sin x + \cos x = \frac{3}{5} + \frac{4}{5} = \frac{7}{5}$ 이다.

24. 다음 그림과 같이 반지름의 길이가 10 인 원 0 에 내접하는 $\triangle ABC$

에서 $\overline{BC} = 10$ 일 때, $\cos A \times \frac{1}{\tan A} + \sin A$ 의 값을 구하여라.



해설
$$\angle A = \angle A'$$

$$\overline{A'C} = \sqrt{20^2 - 10^2} = 10\sqrt{3}$$

$$\cos A \times \frac{1}{\tan A} + \sin A = \frac{\sqrt{3}}{2} \times \sqrt{3} + \frac{1}{2} = 2$$

25. $0^{\circ} < A < 60^{\circ}$ 일 때, $\sqrt{\left(\frac{1}{2} - \cos A\right)^2 - \sqrt{(\cos A + \sin 30^{\circ})^2}}$ 의 값을 구하면?

① $2\sin A$

 $2 \frac{1}{2} \sin A$

(4) 0

 $0^{\circ} < A < 60^{\circ}$ 의 범위에서 $\cos A$ 의 범위는 $\frac{1}{2} < \cos A < 1$ 이므로

 $\frac{1}{2} - \cos A < 0$ 이다.

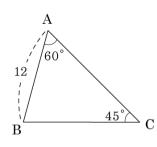
 $\sqrt{\left(\frac{1}{2} - \cos A\right)^2} - \sqrt{(\cos A + \sin 30^\circ)^2}$

 $= -\left(\frac{1}{2} - \cos A\right) - (\cos A + \sin 30^{\circ})$ $= -\frac{1}{2} + \cos A - \cos A - \sin 30^{\circ}$

 $=-\frac{1}{2}-\sin 30^{\circ}$

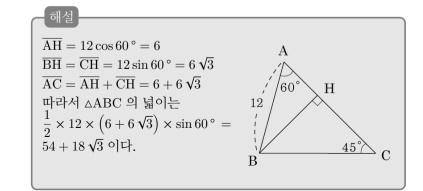
 $=-\frac{1}{2}-\frac{1}{2}=-1\left(\because \sin 30^{\circ}=\frac{1}{2}\right)$

26. 다음 그림에서 △ABC 의 넓이를 구하여 라.



▶ 답:

$$ightharpoonup$$
 정답: $54 + 18\sqrt{3}$



27. 다음 그림과 같이 BC = 6 cm, CD = E F 5 cm, ∠ABE = 30 인 삼각기둥이 있다. 이 삼각기둥의 모든 모서리의 합은?

B ← 6 cm ← C − 5 cm

①
$$30(2 + \sqrt{3}) \text{ cm}$$
 ② $(28 + 10\sqrt{3}) \text{ cm}$
③ $2(13 - 5\sqrt{3}) \text{ cm}$ ④ $2(13 + 5\sqrt{3}) \text{ cm}$

$$30 \left(\sqrt{3} - 1\right) \text{ cm}$$

해설
$$\overline{AE} = \tan 30^{\circ} \times \overline{AB} = \frac{\sqrt{3}}{3} \times 5 = \frac{5\sqrt{3}}{3} \text{ (cm)}$$

$$\overline{BE} = \frac{\overline{AB}}{\cos 30^{\circ}} = \frac{5}{\frac{\sqrt{3}}{2}} = \frac{10}{\sqrt{3}} = \frac{10\sqrt{3}}{3} \text{ (cm)}$$

$$\overline{BC} = \overline{AD} = \overline{EF} = 6 \text{ cm}$$

$$\overline{AB} = \overline{CD} = 5 \text{ cm}, \ \overline{AE} = \overline{DF} = \frac{5\sqrt{3}}{3} \text{ cm}$$

$$\overline{BE} = \overline{CF} = \frac{10\sqrt{3}}{3} \text{ cm} \text{ 따라서 모든 모서리의 합은 18 + 10 +}$$

$$\frac{10\sqrt{3}}{3} + \frac{20\sqrt{3}}{3} = 28 + 10\sqrt{3} \text{ (cm)} \text{ 이다.}$$

28. 다음 그림에서 BC = 4cm, ∠B = 30°, ∠ACH = 45°일 때, △ABC의 넓이는?

①
$$5 \text{cm}^2$$
 ② 7cm^2 ③ $3(\sqrt{2} + 1) \text{cm}^2$

$$(4) \ 3(3-\sqrt{2})\text{cm}^2$$
 $(5) \ 4(\sqrt{3}+1)\text{cm}^2$

제설
$$\overline{AH} = x \text{cm} 라 하면 \overline{CH} = x \text{cm}$$

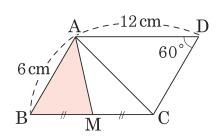
$$\triangle ABH 에서 \tan 30^\circ = \frac{x}{4+x} = \frac{1}{\sqrt{3}}$$

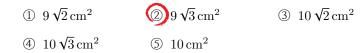
$$\sqrt{3}x = 4+x, (\sqrt{3}-1)x = 4$$

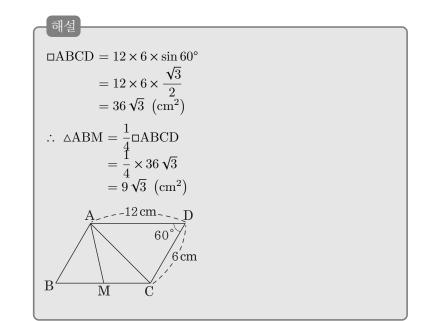
$$\therefore x = \frac{4}{\sqrt{3}-1} = 2(\sqrt{3}+1)$$

$$\triangle ABC = \frac{1}{2} \times 4 \times 2(\sqrt{3}+1) = 4(\sqrt{3}+1)(\text{cm}^2)$$

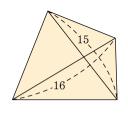
29. 다음 그림과 같은 평행사변형 ABCD 에서 \overline{BC} 의 중점을 M 이라 할 때, $\triangle ABM$ 의 넓이를 구하면?







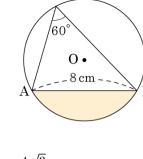
30. 다음 그림과 같이 두 대각선의 길이가 각각 15, 16인 사각형의 넓이의 최댓값을 구하여라.



해설

$$S = \frac{1}{2} \times 15 \times 16 \times \sin \theta = 120 \sin \theta$$

의때 $\theta = 90$ °일 때, 최대이므로 최댓값은 $\sin 90$ °일 때이다. 따라서 S의 최댓값은 120이다.



①
$$16\pi - 2\sqrt{3} \text{ (cm}^2\text{)}$$

③ $\frac{16}{9}\pi - \frac{8\sqrt{3}}{3} \text{ (cm}^2\text{)}$
⑤ $\frac{4}{9}\pi - \frac{16}{2}\sqrt{3} \text{ (cm}^2\text{)}$

해설

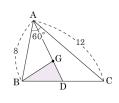
②
$$16\pi - \frac{4\sqrt{3}}{3} \text{ (cm}^2\text{)}$$
④ $\frac{64}{9}\pi - \frac{16}{3}\sqrt{3} \text{ (cm}^2\text{)}$

원의 반지름의 길이를
$$r$$
 이라 하면 $\overline{AC'}\sin 60^\circ = 8$, $\overline{AC'} = \frac{16\sqrt{3}}{3}$ (cm)
$$\therefore r = \frac{1}{2}\overline{AC'} = \frac{8\sqrt{3}}{3}$$
 (cm)
$$\angle AOB = 120^\circ$$
 이므로 부채꼴 AOB
의 넓이는 $\frac{1}{3} \times \pi \times \left(\frac{8\sqrt{3}}{3}\right)^2 = \frac{64}{9}\pi$
따라서 색칠된 부분의 넓이는

 $\frac{64}{9}\pi - \frac{1}{2} \times \left(\frac{8\sqrt{3}}{3}\right)^2 \times \sin 120^{\circ}$

 $=\frac{64}{9}\pi - \frac{16\sqrt{3}}{3}$ (cm²) 이다.

32. 다음 그림의 $\triangle ABC$ 에서 $\overline{AB} = 8$, $\overline{AC} = 12$, $BAC = 60^{\circ}$ 이고 점 G 가 △ABC 의 무게중심일 때, △GBD 의 넓이는?



①
$$2\sqrt{2}$$
 ② $2\sqrt{3}$ ③ $3\sqrt{2}$ ④ $3\sqrt{3}$

$$\triangle ABC$$
 의 넓이= $\frac{1}{2} \times 8 \times 12 \times \sin 60^\circ = 24 \sqrt{3}$
G 가 무게중심이므로 $\overline{BD} = \overline{DC}, \overline{AG} : \overline{GD} = 2 : 1$

$$\triangle ABD = \frac{1}{2} \triangle ABC = 12\sqrt{3}$$

$$\triangle BGD = \frac{1}{3} \triangle ABD = \frac{1}{3} \times 12 \sqrt{3} = 4 \sqrt{3}$$

33. 다음 그림은 A 지점에서 강 건 너에 있는 D 지점까지의 거리

를 구하기 위한 것이다. \overline{AB} = $400 \,\mathrm{m}$, $\overline{\mathrm{AC}} = 200 \,\mathrm{m}$, $\angle \mathrm{BAD} =$ $\angle CAD = 60^{\circ}$ 일 때, \overline{AD} 의 길

Βź

 $_{\mathrm{m}}$

400 m

60° *l*60

D

 $200 \, \mathrm{m}$

답:

ightharpoonup 정답: $\frac{400}{3}$ <u>m</u>

이를 구하여라.

$$\overline{AD} = x$$
 라 하면

 $\triangle ABC = \triangle ABD + \triangle ADC$ 이므로

$$\frac{1}{2} \times 400 \times 200 \times \sin 120^{\circ}$$

$$= \frac{1}{2} \times 400 \times x \times \frac{\sqrt{3}}{2} + \frac{1}{2} \times 200 \times x \times \frac{\sqrt{3}}{2}$$
$$6x = 800$$

$$\therefore x = \frac{400}{3} \text{ (m)}$$