1. 다음 인에 알맞은 수를 써넣어라.

세 변의 길이가 5,12,13 인 삼각형은 $5^2 + 12^2 = 13^2$ 이므로 빗변의 길이가 ① 인 직각삼각형이다.

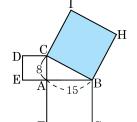
답:▷ 정답: 13

세 변의 길이가 각각 a,b,c 인 \triangle ABC 에서 $a^2+b^2=c^2$ 이면 이

삼각형은 c 를 빗변의 길이로 하는 직각삼각형이다. 따라서 a=5,b=12,c=13 해당하므로 13 을 빗변의 길이로 하는 직각삼각형이다.

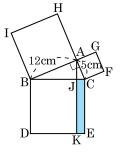
- 다음 그림과 같이 직각삼각형의 세 변을 각 2. 각 한 변으로 하는 정사각형을 그렸을 때, □BHIC 의 넓이는?
 - ② 320 ① 324

⑤ 240



 $\overline{\mathrm{CB}}=17$ 이므로 사각형 BHIC 의 넓이는 $17\times17=289$ 이다.

3. 다음 그림에서 ĀB = 12 cm, ĀC = 5 cm 일 때, □JKEC 의 넓이를 구하여라.



▷ 정답: 25<u>cm²</u>

 $\underline{\rm cm^2}$

답:

 $\Box \text{JKEC} = \Box \text{ACFG} = 5 \times 5 = 25 (\text{ cm}^2)$

4. 세 변의 길이가 x, x+2, x+4 인 삼각형이 직각삼각형일 때, x 의 값을 구하여라.

 답:

 ▷ 정답:
 6

02.

해설

x+4 가 가장 긴 변이므로 빗변에 해당한다. 따라서 피타고라스

정리를 이용하면 $(x+4)^2 = (x+2)^2 + x^2$ $x^2 - 4x - 12 = 0$

(x-6)(x+2) = 0

 $\therefore x = 6(\because x > 0)$

- 5. x 가 3 보다 큰 수일 때, 삼각형의 세 변의 길이가 5, x + 1, x + 3 인 삼각형이 직각삼각형이 되도록 하는 x 의 값을 구하여라.
 - ▶ 답:

ightharpoonup 정답: $rac{17}{4}$

해설

x+3 이 빗변의 길이이므로

 $(x+3)^2 = (x+1)^2 + 25$ $x^2 + 6x + 9 = x^2 + 2x + 26$ 4x = 17

 $\therefore x = \frac{17}{4}$

- 6. x 가 2 보다 큰 수일 때, 삼각형의 세 변의 길이가 6, x + 3, x + 5 인 삼각형이 직각삼각형이 되도록 하는 x 의 값으로 알맞은 것은?
 - ① 1 ② 2 ③ 3 ④ 4 ⑤5

해설 $x+5 가 빗변의 길이이므로 <math display="block"> (x+5)^2 = (x+3)^2 + 36$ $x^2 + 10x + 25 = x^2 + 6x + 45$

4x = 20 $\therefore x = 5$

7. 다음 안에 알맞은 말을 써넣어라.

세 변의 길이가 4 cm, 6 cm, 8 cm 인 삼각형은 삼각형이고, 세 변의 길이가 3 cm, 4 cm, 5 cm 인 삼각형은 삼각형이다.

▶ 답:

 ▷ 정답:
 둔각

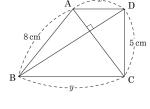
 ▷ 정답:
 직각

답:

 $4^2+6^2>8^2$ 이므로 둔각삼각형, $3^2+4^2=5^2$ 이므로 직각삼각형

해설

8. 그림과 같이 $\square ABCD$ 가 주어졌을 때, $x^2 + y^2$ 의 값을 구하여라.



답:

➢ 정답: 89

해설

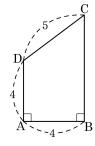
 $x^2 + y^2 = 8^2 + 5^2 = 89$

- 직각삼각형 ABC 에서 $\angle B=90^\circ, \ \overline{AC}=15 cm, \ \overline{BC}=12 cm$ 일 때, 9. $\overline{\mathrm{AB}}$ 의 길이는?
 - \bigcirc 5cm ② 6cm
- ③ 7cm
- ④ 8cm
- (5)9cm

해설

 $\angle \mathrm{B} = 90^\circ$ 이므로 $\overline{\mathrm{AC}}$ 가 빗변이다. 따라서 피타고라스 정리에 따라 $\overline{AC^2} = \overline{AB^2} + \overline{BC^2}$ $15^2 = x^2 + 12^2$ $x^2 = 81$ x > 0 이므로 x = 9(cm) 이다.

10. 다음 그림에서 \overline{BC} 의 길이는?



① 7 ② 8 ③ 9 ④ 10 ⑤ 11

점 D를 지나면서 \overline{AB} 에 평행한 보조선을 긋고 \overline{BC} 와의 교점을 E라고 하자. ΔDEC 에 피타고라스 정리를 적용하면 $\overline{EC}=3$ 따라서 $\overline{BC}=4+3=7$ 이다.

- 11. 가장 짧은 변의 길이가 x 이고, 나머지 두 변의 길이가 각각 15, 17 인 삼각형이 예각삼각형이기 위한 x 의 값의 범위는?
 - ① 8 < x < 15 ② 8 < x < 17 ③ 9 < x < 15 ④ 9 < x < 17

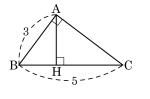
i) x + 15 > 17, x > 2ii) $x^2 + 15^2 > 17^2, x > 8$ iii) x < 15

iii) x < 15∴ 8 < x < 15

 $\therefore 8 < x$

해설 ___

12. 다음 그림의 직각삼각형 ABC 의 점 A 에서 빗변에 내린 수선의 발을 ${
m H}$ 라 할 때, ${
m \overline{AH}}$ 의 길이는?



① 1.2 ② 1.6 ③ 2

4 2.4

⑤ 2.8

 $\overline{\mathrm{AC}}=4$ 이므로

해설

 $\overline{\mathrm{AH}} \times 5 = 3 \times 4$

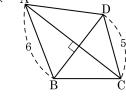
 $\therefore \overline{\mathrm{AH}} = 2.4$

13. 다음 그림의 □ABCD에서 $\overline{AD}^2 + \overline{BC}^2$ 의 값은?

② 30

⑤61

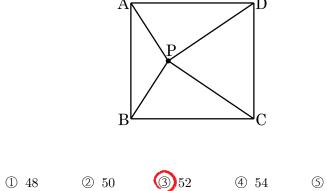
- ① 11 ④ 56
- ③ 41



해설

대각선이 직교하는 사각형에서 두 쌍의 대변의 제곱의 합이 서로 같다. $... \ \overline{AD}^2 + \overline{BC}^2 = 5^2 + 6^2 = 61$

 ${f 14}$. 다음 그림의 직사각형 ABCD 에서 $\overline{PA}=4$, $\overline{PC}=6$ 일 때, $\overline{PB}^2+\overline{PD}^2$ 의 값을 구하여라.



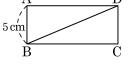
 $\bigcirc{3}$ 52

④ 54

⑤ 56

 $\overline{\mathrm{PB^2}} + \overline{\mathrm{PD^2}} = 4^2 + 6^2 = 52$ 이다.

15. 다음 그림과 같이 세로의 길이가 5 인 직사 각형의 넓이가 60 일 때, 직사각형의 대각선 BD 의 길이를 구하시오.



답:

▷ 정답: 13

직사각형의 넓이는

해설

 $5 \times \overline{AD} = 60$ 이므로 $\overline{AD} = 12$ $\overline{BD} = x$ 라 하면

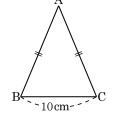
피타고라스 정리에 따라

5² + 12² = x² x 는 변의 길이이므로 양수이다.

따라서 x = 13 이다.

16. 다음 그림과 같이 넓이가 $60 \, \mathrm{cm}^2$ 인 이등변삼각 형 ABC 에서 $\overline{\mathrm{BC}} = 10 \, \mathrm{cm}$ 일 때, $\overline{\mathrm{AB}}$ 의 길이를 구하여라.

 $\underline{\mathrm{cm}}$



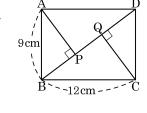
정답: 13 cm

▶ 답:

높이 = h 라 하면, $\frac{1}{2} \times h \times 10 = 60$

 $\therefore h = 12 \text{ cm},$ $(\overline{AB})^2 = 5^2 + 12^2, \overline{AB} = 13 \text{ cm}$

17. 다음 직사각형의 두 꼭짓점 A , C 에서 대 각선 BD 에 내린 수선의 발을 각각 P, Q 라 할 때, $\overline{AP} + \overline{PD}$ 의 길이를 구하여라.



➢ 정답: 16.8 cm

▶ 답:

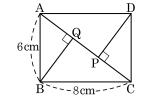
 $\triangle ABD$ 에서 $\overline{BD}=15(\,\mathrm{cm})$ 이다.

해설

 $\overline{AP} \times \overline{BD} = \overline{AB} \times \overline{AD}$ 이므로, $\overline{AP} = 7.2 (\mathrm{cm})$ 이다. $\triangle ADP$ 와 $\triangle ABD$ 는 닮음이므로 $\overline{PD} : \overline{AD} = \overline{AD} : \overline{BD}$ 에서 $\overline{AD}^2 = \overline{PD} \times \overline{BD}$ 이므로 $\overline{PD} = 9.6 (\mathrm{cm})$ 이다. 따라서 $\overline{AP} + \overline{PD} = 7.2 + 9.6 = 16.8 (\mathrm{cm})$ 이다.

 $\underline{\mathrm{cm}}$

18. 다음 그림과 같이 직사각형 ABCD 에서 두 꼭짓점 B,D 에서 수선을 내렸을 때, △ABQ 의 넓이를 구하여라.



답:
 ▷ 정답: 8.64 cm²

 ΔABQ 의 넓이를 구하기 위해서 $\overline{AQ},\;\overline{BQ}$ 의 길이를 각각 구하

면, $\triangle ABC$ 가 직각삼각형이므로 $\overline{AC}=10(\,\mathrm{cm})$ 이다. $\triangle ABQ$ 와 $\triangle ABC$ 는 닮음이므로

 $\underline{\mathrm{cm}^2}$

 $\overline{AB} : \overline{AC} = \overline{AQ} : \overline{AB}$ 에서

 $\overline{AB}^2 = \overline{AQ} \times \overline{AC}$ 이므로

 $\overline{AQ} = \frac{36}{10} = 3.6 \text{ (cm)}$

 $\overline{BQ} \times \overline{AC} = \overline{AB} \times \overline{BC}$

 $\overline{BQ} = \frac{48}{10} = 4.8 \text{ (cm)}$

따라서 $\triangle ABQ$ 의 넓이는 $\frac{1}{2} \times 4.8 \times 3.6 = 8.64 (\,\mathrm{cm^2}) \,\mathrm{이다}.$

오른쪽 그림과 같이 $\overline{AB} = \overline{AC}$ 인 이등변삼 각형 ABC의 높이가 8 cm 이고 넓이가 120 cm²일 때, △ABC의 둘레의 길이를 구하시오.

▷ 정답: 64cm

답:

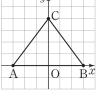
 $\triangle ABC = \frac{1}{2} \times \overline{BC} \times \overline{AH}$ 에서 $120 = \frac{1}{2} \times \overline{BC} \times 8$ $\therefore \ \overline{BC} = 30 \ (cm)$

 $\overline{\text{BH}} = \overline{\text{CH}} = \frac{1}{2}\overline{\text{BC}} = \frac{1}{2} \times 30 = 15 \text{ (cm)}$

 $\triangle ABH$ 에서 $\overline{AB}^2 = \left(\frac{30}{2}\right)^2 + 8^2 = 289$

= 17 + 30 + 17 = 64 (cm)

오른쪽 그림과 같이 좌표평면 위 에 $\overline{AC} = \overline{BC}$ 인 이등변삼각 형 ABC가 있다. A(-3, 0), B(3, 0), C(0, 4)일 때, △ABC 의 둘레의 길이를 구하시오.



▷ 정답: 16

▶ 답:

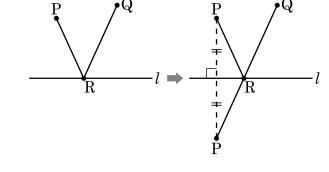
해설

△AOC에서 $\overline{AC}^2 = 3^2 + 4^2 = 25$ $\therefore \overline{AC} = \overline{BC} = 5$ ∴ (△ABC의 둘레의 길이)=AC+AB+BC

 $\overline{AO} = \overline{BO} = 3$, $\overline{CO} = 4$ 이므로

=5+6+5=16

- **21.** 다음 그림과 같이 점 P, Q가 있을 때, \overline{PR} + \overline{RQ} 의 값이 최소가 되도록 직선 l위에 점 R를 잡는 과정이다. 빈칸에 알맞은 것은?
 - 직선 \square 에 대한 점 P의 대칭점 P'을 잡고 선분 \square 가 직선 l과 만나는 점을 \square 로 잡는다.

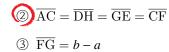


- ④ Q, PQ, Q ⑤ Q, P'Q, R
- ① *l*, PQ, Q ② *l*, PQ, R
- ③ *l*, P'Q, R

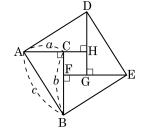
l에 대한 점 P의 대칭점 P'을 잡고 선분 P'Q가 직선 l과 만나는

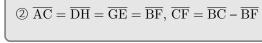
점을 R로 잡는다.

- 22. 다음 그림은 직각삼각형 ABC와 합동인 삼 각형을 붙여 정사각형 ABED를 만든 것이 다. 다음 중 옳지 <u>않은</u> 것은?
 - ① $\triangle ABC \equiv \triangle EDG$



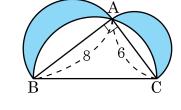
- $\textcircled{4} \ \Box ABED = \Box CFGH + \triangle AHD +$
- $\Delta {\rm ABC} + \Delta {\rm EFB} + \Delta {\rm GDE}$ ⑤ □CFGH는 정사각형





해설

23. 다음 그림은 직각삼각형 ABC 의 세 변을 각각 지름으로 하는 세 개의 반원을 그린 것이다. $\overline{AB}=8,\overline{AC}=6$ 일 때, 색칠한 부분의 넓이를 구하여라.



답:▷ 정답: 24

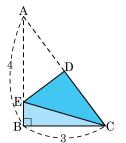
7 00: -

해설

(색칠한 부분의 넓이) = △ABC

 $= \frac{1}{2} \times 8 \times 6$ = 24

- **24.** 다음 그림과 같이 $\angle B = 90^{\circ}$ 인 직각삼각형 ABC 의 빗변 AC 를 두 점 A 와 C 가 겹쳐지 도록 접었을 때, △CDE 의 둘레의 길이는?



 ΔABC 가 직각삼각형이므로 $\overline{AC}^2=4^2+3^2, \, \overline{AC}=5 \,$ 이다. $\overline{EB}=x$ 라 두면 $\overline{AE}=\overline{EC}=4-x \,$ 이고

ΔEBC 가 직각삼각형이므로

 $(4-x)^2 = x^2 + 3^2, x = \frac{7}{8}$ 이다. $\triangle ADE$ 가 직각삼각형이므로

 $\overline{\mathrm{DE}}^2 = \left(\frac{25}{8}\right)^2 - \left(\frac{5}{2}\right)^2, \ \overline{\mathrm{DE}} = \frac{15}{8} \ \mathrm{olth}.$

따라서
$$\triangle \text{CDE}$$
 의 둘레는 $\frac{15}{8} + \frac{25}{8} + \frac{5}{2} = \frac{15}{2}$ 이다.

여 $\overline{AP} + \overline{BP}$ 의 길이가 최소일 때, \overline{AP} 의 길이를 구하시오.

다음 그림과 같이 좌표평면 위의 두 점 A(-8, 3), B(4, 6)과 x축 위를 움직이는 점 P에 대하

▶ 답: ▷ 정답: 5

오른쪽 그림과 같이 점 A와 x축에 대하여 대칭인 점을 A'이라 하면

A'(-8, -3)이므로

 $\overline{AP} + \overline{BP} = \overline{A'P} + \overline{BP} \ge \overline{A'B}$

 $\overline{A'B}^2 = (8+4)^2 + (3+6)^2$

=225 \therefore $\overline{A'B}=15$ $\overline{AP} + \overline{BP}$ 의 길이가 최소일 때의 점 P의 위치를

P'이라 하면

△A'CP'과 △BDP'에서 $\angle A'P'C = \angle BP'D$ (맞꼭지각),

 $\angle A'CP' = \angle BDP' = 90^{\circ}$

∴ △A'CP'∽△BDP' (AA 닮음) $\overline{A'P'}$: $\overline{BP'} = \overline{A'C}$: $\overline{BD} = 3$: 6 = 1 : 2이므로

 $\overline{A'P'} = \frac{1}{3} \overline{A'B} = \frac{1}{3} \times 15 = 5$

따라서 구하는 $\overline{\mathrm{AP}}$ 의 길이는 5이다.