방정식
$$(x-1)(x^2-x-2)=0$$
의 모든 근의 합을 구하면?

① 5 ② 4 ③ 3 ④ ② 5 1

해설
$$(x-1)(x-2)(x+1) = 0$$

$$\therefore x = -1, 1, 2$$

$$\therefore -1 + 1 + 2 = 2$$

2. $x^3 - 2x^2 - 5x + 6 = 0$ 의 해를 구하여라.

$$f(x) = x^3 - 2x^2 - 5x + 6$$
으로 놓으면

 $f(1) = 1 - 2 - 5 + 6 = 0$ 이므로, 조립제법에 의하면

 1
 $1 - 2 - 5 = 6$
 $1 - 1 - 6$
 0
 $x^3 - 2x^2 - 5x + 6 = (x - 1)(x^2 - x - 6)$

$$\therefore x = 1$$
 또는 $x = -2$ 또는 $x = 3$

=(x-1)(x+2)(x-3)

- **3.** 방정식 $(x^2 + x + 2)^2 + 8 = 12(x^2 + x)$ 의 모든 근의 합은?
 - ① 1 ② 0 ③ -1 ④ -2 ⑤ -3

 $x^2 + x - 6 = 0$ \Rightarrow x = -3 또는 x = 2 \therefore 모든 근의 합 = -2

(ii) Y = 6

4. 다음 방정식의 모든 해의 곱을 구하여라.

$$(x^2 - 2x)(x^2 - 2x - 2) - 3 = 0$$

답:

▷ 정답: -3

$$(x^2 - 2x)(x^2 - 2x - 2) - 3 = 0$$
 에서 $x^2 - 2x = t$ 로 놓으면 $t(t-2) - 3 = 0$,

$$t^{2} - 2t - 3 = 0$$
$$(t - 3)(t + 1) = 0$$

$$∴ t = 3 ± t = -1$$

(i)
$$t = 3$$
, 즉 $x^2 - 2x = 3$ 일 때
 $x^2 - 2x - 3 = 0$

$$(x-3)(x+1) = 0$$

$$\therefore x = -1 \ \Xi = x = 3$$

(ii)
$$t = -1$$
, 즉 $x^2 - 2x = -1$ 일 때 $x^2 - 2x + 1 = 0$

$$\therefore x = 1 \left(\frac{2}{5} \frac{1}{1} \right)$$

따라서,
$$-1 \times 3 \times 1 = -3$$

 $(x-1)^2 = 0$

 $\mathbf{5}$. 다음 방정식의 모든 해의 합을 구하여라.

$$x^4 - 13x^2 + 36 = 0$$

▶ 답:

▷ 정답: 0

$$x^2 = t$$
로 놓으면
 $t^2 - 13t + 36 = 0, (t - 4)(t - 9) = 0$

(i)
$$t = 4$$
일 때, $x^2 = 4$

 $\therefore t = 4$ 또는 t = 9

 $x^4 - 13x^2 + 36 = 0$ 에서

$$x = \pm 2$$

(ii) $t = 9$ 일 때, $x^2 = 9$

(11)
$$t = 9$$
 월 때, $x^2 = 9$
∴ $x = \pm 3$

$$(-2) + 2 + (-3) + 3 = 0$$

6. 사차방정식
$$x^4 - 6x^3 + 11x^2 - 6x + 1 = 0$$
의 한 근을 α 라 할 때, $\alpha + \frac{1}{\alpha}$ 의 값은?

해설
먼저 주어진 방정식을
$$x^2$$
으로 나누면
방정식은 $x^2 - 6x + 11 - \frac{6}{x} + \frac{1}{x^2} = 0$
 $\rightarrow \left(x + \frac{1}{x}\right)^2 - 6\left(x + \frac{1}{x}\right) + 9 = 0$ 이 된다.
이 식에 α 를 넣어도 성립하므로
 $\alpha + \frac{1}{\alpha}$ 를 t 로 치환하면
 $\alpha + \frac{1}{\alpha}$ 는 3이 된다.

따라서 $\alpha + \frac{1}{\alpha} = 3$

다음 방정식의 실근의 합을 구하여라. 7.

$$x^4 + 5x^3 - 12x^2 + 5x + 1 = 0$$

- 답:

▷ 정답: -6

x = 0을 대입하면

1 = 0이 되어 모순이므로 $x \neq 0$ 이다.

따라서, 주어진 식의 양변을

 x^2 으로 나누면

 $x^2 + 5x - 12 + \frac{5}{x} + \frac{1}{x^2} = 0$

 $\left(x^2 + \frac{1}{r^2}\right) + 5\left(x + \frac{1}{r}\right) - 12 = 0$

 $\therefore \left(x + \frac{1}{r}\right)^2 + 5\left(x + \frac{1}{r}\right) - 14 = 0$ 여기서 $x + \frac{1}{x} = X$ 로 놓으면

 $X^2 + 5X - 14 = 0$, (X + 7)(X - 2) = 0

∴ X = -7 또는 X = 2 (i) X = -7일 때,

 $x + \frac{1}{r} = -7 \, \text{old}$

 $x^2 + 7x + 1 = 0$

 $\therefore \frac{-7 \pm 3\sqrt{5}}{2}$ (ii) X = 2일 때.

 $x + \frac{1}{r} = 2$ 에서 $x^2 - 2x + 1 = 0$, $(x - 1)^2 = 0$

 $\therefore x = 1$ (i),(ii)로부터

x = 1(중군) 또는 $x = \frac{-7 \pm 3\sqrt{5}}{2}$

따라서, 모든 근의 합은

 $1 + \frac{-7 + 3\sqrt{5}}{2} + \frac{-7 - 3\sqrt{5}}{2} = -6$

3. x에 대한 삼차방정식 $x^3 + 3x^2 - kx - 5 = 0$ 의 한 근이 -1일 때, 상수 k의 값은?

①
$$-5$$
 ② -3 ③ -1 ④ 1 ⑤ 3

해설
$$x^3 + 3x^2 - kx - 5 = 0$$
의 한 근이 -1 이므로 $x = -1$ 을 대입하면
$$(-1)^3 + 3(-1)^2 - k(-1) - 5 = 0$$
$$\therefore k = 3$$

9. 삼차방정식 $x^3 + x^2 + ax + b = 0$ 의 두 근이 -3, $1 - \sqrt{2}$ 일 때, 유리수 a, b의 함 a+b의 값은?

(5) 10

계수가 실수인 삼차방정식의 한 근이 $1 - \sqrt{2}$ 이므로 다른 한 근은

$$1+\sqrt{2}$$
이다.

따라서, 근과 계수의 관계에 의하여

따라서, 근괴
$$a = (1 - \sqrt{2})$$

 $a = (1 - \sqrt{2}) (1 + \sqrt{2}) + (-3) (1 - \sqrt{2}) + (-3) (1 + \sqrt{2}) = -7$

$$b = -\left(1 - \sqrt{2}\right)\left(1 + \sqrt{2}\right)(-3) = -3$$

$$\therefore a + b = -10$$

10. 다음 중 1 + i가 하나의 근이며 중근을 갖는 사차방정식은?

②
$$(x^2-2x+2)(x-1)(x+1)$$

$$(x^2-1)(x^2-2x-1)$$

$$(x^2+1)(x-1)(x+1)$$

$$(x^2+1)(x^2-2x+1)$$

다른 한 근은 1 – *i*이다.

$$\therefore \{x - (1+i)\} \{x - (1-i)\} = 0$$

$$\Rightarrow x^2 - 2x + 2 = 0$$

→ x⁻ - 2x + 2 = 0 주어진 조건에 맞는 방정식:

$$(x^2 - 2x + 2)(x - \alpha)^2 = 0$$

: ①이 조건에 맞다

11. $x^3 + 2x^2 + 3x + 1 = 0$ 의 세 근을 α, β, γ 라 한다. $\frac{1}{\alpha}, \frac{1}{\beta}, \frac{1}{\gamma}$ 을 근으로

하는 삼차방정식이 $x^3 + ax^2 + bx + c = 0$ 일 때, abc의 값을 구하면?

② 3 \bigcirc 2 ③ 4 (4) 5

해설
$$x^3 + 2x^2 + 3x + 1 = 0 \, \text{의}$$
세 근이 α, β, γ 이므로
$$\alpha + \beta + \gamma = -2,$$

$$\alpha\beta + \beta\gamma + \gamma\alpha = 3,$$

$$\alpha\beta\gamma = -1$$

$$\frac{1}{\alpha} + \frac{1}{\beta} + \frac{1}{\gamma} = \frac{\alpha\beta + \beta\gamma + \gamma\alpha}{\alpha\beta\gamma} = -3,$$

$$\frac{1}{\alpha\beta} + \frac{1}{\beta\gamma} + \frac{1}{\gamma\alpha} = \frac{\alpha + \beta + \gamma}{\alpha\beta\gamma} = 2,$$

$$\frac{1}{\alpha\beta\gamma} = -1$$
따라서 $\frac{1}{\alpha}, \frac{1}{\beta}, \frac{1}{\gamma} = \text{세 근으로 하는}$
삼차항의 계수가 1인 방정식은
$$x^3 + 3x^2 + 2x + 1 = 0$$

$$\Leftrightarrow x^3 + ax^2 + bx + c = 0$$

$$\therefore a = 3, b = 2, c = 1$$

하
$$x + ax + bx + c = 0$$

 $\therefore a = 3, b = 2, c = 1$

$$x^3 + 2x^2 + 3x + 1 = 0 \cdots 0$$

$$x = \frac{1}{X} 로 놓으면$$

$$\left(\frac{1}{X}\right)^3 + 2 \cdot \left(\frac{1}{X}\right)^2 + 3 \cdot \left(\frac{1}{X}\right) + 1 = 0$$

$$\therefore X^3 + 3X^2 + 2X + 1 = 0 \cdots 0$$
①의 세 근이 α, β, γ 이므로
②의 세 근은 $\frac{1}{\alpha}, \frac{1}{\beta}, \frac{1}{\gamma}$ 이다.
 $\therefore 7$ 하는 방정식은

$$X^3 + 3X^2 + 2X + 1 = 0 \text{에서}$$

$$abc = 3 \cdot 2 \cdot 1 = 6$$

12. 삼차방정식 $x^3 - 5x^2 + ax + b = 0$ 의 한 근이 $1 + \sqrt{2}$ 일 때, 다른 두 근을 구하면? (단, a, b는 유리수)

①
$$1 - \sqrt{2}$$
, 2 ② $-1 + \sqrt{2}$, -3 ③ $1 - \sqrt{2}$, 3
④ $1 - \sqrt{2}$, -3 ⑤ $-1 + \sqrt{2}$, 3

해설
한 근이
$$1+\sqrt{2}$$
이면 다른 한 근은 $1-\sqrt{2}$ 이다.
삼차방정식의 근과 계수와의 관계에 의해 세근의 합은 5 이므로
 $\therefore 1+\sqrt{2}+(1-\sqrt{2})+\alpha=5, \ \alpha=3$
 \therefore 다른 두 근은 $3.1-\sqrt{2}$

13. 삼차방정식 $x^3 + px + q = 0$ 의 한 근이 $\sqrt{3} - 1$ 일 때, 유리수 p, q에서 p + q의 값은 ?

해설

계수가 모두 유리수이고
$$-1 + \sqrt{3}$$
이 한 근이므로, 다른 한 근은 $-1 - \sqrt{3}$ 이다.

또 다른 한근을 α 라 하면 삼차방정식의 근과 계수와의 관계에 의해

$$(-1 + \sqrt{3}) + (-1 - \sqrt{3}) + \alpha = 0, \ \alpha = 2$$

$$(-1 + \sqrt{3})(-1 - \sqrt{3}) + \alpha\{(-1 + \sqrt{3}) + (-1 - \sqrt{3})\} = p$$

$$(-1 + \sqrt{3})(-1 - \sqrt{3})\alpha = -q$$

$$\therefore p = -6, q = 4$$

$$\therefore p+q=-2$$

$$(\sqrt{3} - 1)^3 + p(\sqrt{3} - 1) + q = 0$$

-p + q - 10 + (6 + p)\sqrt{3} = 0
\therefore\tau - p + q - 10 = 0, 6 + p = 0

$$\therefore p = -6, q = 4$$

$$p + q = -6 + 4 = -2$$

14.
$$x^3-1=0$$
의 한 허근을 ω 라 할 때, $\omega^3+\overline{\omega}^3$ 의 값을 구하면? (단, $\overline{\omega}$ 는 ω 의 켤레복소수이다.)

해설
$$x^{3} - 1 = (x - 1)(x^{2} + x + 1) = 0$$

$$x = 1 또는 x = \frac{-1 \pm \sqrt{3}i}{2}$$

$$\frac{-1 + \sqrt{3}i}{2} \stackrel{=}{=} \omega 라 하면$$

$$\overline{\omega} = \frac{-1 - \sqrt{3}i}{2}$$

$$\therefore \omega^{3} = 1, \overline{\omega}^{3} = 1, \omega^{3} + \overline{\omega}^{3} = 2$$

15. 어떤 정육면체의 밑변의 가로의 길이를 1 cm줄이고, 세로의 길이와 높이를 각각 2 cm, 3 cm씩 늘였더니 이 직육면체의 부피가 처음 정육면체의 부피의 ⁵/₂ 배가 되었다. 처음 정육면체의 한 변의 길이를 구하여라. (단, 정육면체 한 변의 길이는 유리수이다.)
 답: cm
 정답: 2cm

정육면체의 한 변의 길이가
$$x$$
 cm라 하면
조건으로부터 $(x-1)(x+2)(x+3)=\frac{5}{2}x^3$, $x^3+4x^2+x-6=\frac{5}{2}x^3$, $\frac{3}{2}x^3-4x^2-x+6=0$ 에서

 $3x^3 - 8x^2 - 2x + 12 = 0$ 을 풀면 x = 2(cm)

해설