
① 70 개 ② 75 개 ③ 80 개 ④ 85 개 ⑤ 90 개

해설
$$n-3=12, n=15$$
∴ 십오각형
$$\frac{n(n-3)}{2}=\frac{15(15-3)}{2}=90 (개)$$

2. 다음 그림에서 \overline{CF} 는 원 O 의 지름이고 \overline{AF} // \overline{BE} // \overline{CD} 일 때, 다음 중 ∠BOC 의 크기와 다른 하나는?

③ ∠OCD

② ∠ODC

∠COD ④ ∠EOF

∠AFO

 $\overline{AF} // \overline{BE} // \overline{CD}$ 이므로 $\angle BOC = \angle AFO$ (동위각), $\angle BOC = \angle AFO$ \angle OCD (엇각), \angle BOC = \angle EOF (맞꼭지각)이고, \triangle OCD 는 이 등변삼각형이므로 ZBOC = ZODC 이다.

3. 다음 중 팔면체를 모두 고르면?

① 육각기둥 © 육각뿔 © 칠각뿔

② 칠각뿔대◎ 칠각기둥⑤ 육각뿔대

(4) (2), (2), (3) (4), (2), (3), (4), (4), (4), (5), (4), (5), (5), (6

- ⊙ 육각기둥의 면의 개수:8개
- © 육각뿔의 면의 개수: 7 개
- ② 칠각뿔의 면의 개수:8개
- ⓐ 칠각뿔대의 면의 개수: 9 개
- @ 칠각기둥의 면의 개수: 9 개
- ⓐ 육각뿔대의 면의 개수: 8 개 따라서 팔면체는 ⑤, ⑥, ⑥이다.

1. 모서리의 개수가 12 인 각뿔대의 꼭짓점 개수를 x, 면의 개수를 y 라할 때, x + y 의 값은?

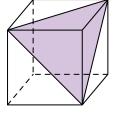
해설 모서리의 개수가 12 인 각뿔대는 사각뿔대이므로 꼭짓점의 개수 는 8 개, 면의 개수는 6 개이다. 따라서 x = 8, y = 6 이므로 x + y = 14 이다. 5. 다음 보기 중 옆면의 모양이 사다리꼴인 것을 모두 고르면?

해설 옆면의 모양이 사다리꼴인 것은 각뿔대이다. 따라서 ⓒ, @이다. 6. 다음 조건을 모두 만족하는 입체도형은?

보기

- 정다면체이다.
- € 각 꼭짓점에 모이는 면의 수가 4 개이다.
- © 각 면은 크기가 같은 정삼각형이다.

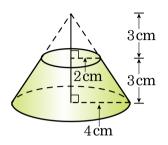
① 정사면체


② 정육면체

③ 정팔면체

- ④ 정십이면체
- ⑤ 정이십면체

- 각 면이 정삼각형인 정다면체: 정사면체, 정팔면체, 정이십 면체
- 한 꼭짓점에 모인 면의 개수가 4 개인 정다면체: 정팔면체
- :. 정팔면체


7. 다음과 같이 한 모서리의 길이가 8 cm 인 정육 면체에서 그림과 같이 잘랐을 때 색칠한 부분의 부피를 구하여라.

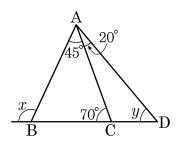
$$ightharpoonup$$
 정답: $\frac{256}{3}$ $\underline{\mathrm{cm}^3}$

$$\frac{1}{3} \times \frac{1}{2} \times 8 \times 8 \times 8 = \frac{256}{3} \text{ (cm}^3\text{)}$$

8. 다음과 같은 원뿔대의 부피는?

① $48\pi\mathrm{cm}^3$

 $244\pi \text{cm}^3$

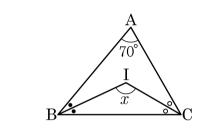

 $36\pi \text{cm}^3$

 $4 32\pi \text{cm}^3$

(5) $28\pi \text{cm}^3$

$$V = ($$
큰 원뿔의 부피 $) - ($ 작은 원뿔의 부피 $)$
= $\frac{1}{3} \times \pi \times 4^2 \times 6 - \frac{1}{3} \times \pi \times 2^2 \times 3$
= $32\pi - 4\pi = 28\pi (\mathrm{cm}^3)$

9. 다음 그림에서 x + y 의 값을 구하여라.

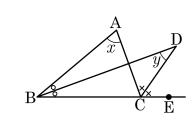


$$x = 45^{\circ} + 70^{\circ} = 115^{\circ}$$
$$115^{\circ} = 45^{\circ} + 20^{\circ} + y$$

$$\therefore y = 50^{\circ}$$

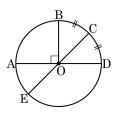
$$\therefore x + y = 165^{\circ}$$

10. 다음 그림의 \triangle ABC 에서 \angle B 와 \angle C 의 이등분선의 교점을 I 라고 하자. \angle A = 70° 일 때, \angle BIC 의 크기는?

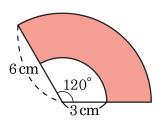


①
$$120^{\circ}$$
 ② 125° ③ 130° ④ 135° ⑤ 140°

$$\triangle$$
ABC 에서 $2\angle$ IBC $+ 2\angle$ ICB $+ 70^{\circ} = 180^{\circ}$
 \therefore \angle IBC $+ \angle$ ICB $= 55^{\circ}$


 $\triangle BIC$ of $\lambda = 180^{\circ} - (\angle IBC + \angle ICB) = 125^{\circ}$

11. 다음 그림에서 ∠ABC 의 이등분선과 ∠ACE 의 이등분선의 교점을 점 D 라 할 때, ∠x : ∠y 를 구하면?


해설
$$\angle x + \angle B = 2(\angle y + \angle DBC) \ \text{인데} \ \angle B = 2\angle DBC \ \text{이므로} \ \angle x = 2\angle y$$
 이다.
따라서 $\angle x : \angle y = 2\angle y : \angle y = 2 : 1$ 이다.

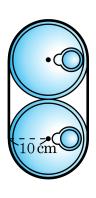
12. 다음 그림에서 ĀD, Œ 는 원 ○의 지름이고 ĀD⊥BO, 5.0ptBC = 5.0ptCD 일 때, 다음 중 옳지 않은 것을 모두 고르면?

- $\boxed{1}{3}\overline{\rm DE} = \overline{\rm AE}$
- $2 \frac{2}{3} 5.0 \text{ptDE} = 5.0 \text{ptBD}$
- \bigcirc $\angle DOE \angle BOC = \angle AOB$
- ④ (부채꼴 AOB의 넓이) = (부채꼴 COD의 넓이) × 2
- ⑤ △AOB의 넓이는 △AOE의 넓이의 두 배와 같다.
 - 해설
 - ① 중심각의 크기와 현의 길이는 정비례하지 않는다.
 - ⑤ ΔAOB 의 넓이는 (부채꼴 AOB의 넓이) (현 AB와 호 5.0ptAB로 이루어진 활꼴의 넓이)

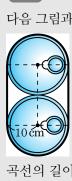
13. 다음 그림에서 색칠된 부분의 둘레의 길이는?

①
$$(10\pi + 3)$$
cm

$$\bigcirc (6\pi + 6) \text{cm}$$


$$(6\pi + 6)$$
cm $(8\pi + 6)$ cm

$$4 25\pi cm$$

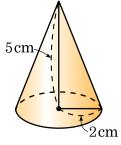

$$(10\pi + 3)$$
cm

$$2\pi \times 3 \times \frac{120^{\circ}}{360^{\circ}} + 2\pi \times 6 \times \frac{120^{\circ}}{360^{\circ}} + 3 \times 2$$
$$= 2\pi + 4\pi + 6 = 6\pi + 6(\text{cm})$$

14. 다음 그림과 같이 반지름의 길이가 10cm 인 깡통을 끈으로 묶을 때, 필요한 끈의 최소 길이는? (단, 매듭의 길이는 생각하지 않는다.)

- ① $(13 + 20\pi)$ cm ② $(15 + 20\pi)$ cm ③ $(18 + 20\pi)$ cm
- $(30 + 20\pi)$ cm $(30 + 20\pi)$ cm

다음 그림과 같이 선을 그으면,


곡선의 길이는 반지름이 $10 \mathrm{cm}$ 인 원의 둘레이므로, $2\pi \times 10 = 20\pi \mathrm{(cm)}$

직선의 길이는 $2 \times 10 \times 2 = 40$ (cm),

필요한 끈의 길이는 $(20\pi + 40)$ cm 이다.

넓이는?

15. 다음 그림과 같은 회전체를 회전축을 포함하는 평면으로 자른 단면의

① 2cm^2

 2 4cm^2

 3 5cm^2

 410cm^2

⑤ 20cm^2

해설

회전축을 포함하는 평면으로 자르면 밑변이 4cm, 높이가 5cm

인 삼각형 모양이므로 단면의 넓이는 $\frac{1}{2} \times 5 \times 4 = 10 (\text{cm}^2)$ 이다.

16. 다음 그림과 같은 전개도로 만든 삼각기둥의 부피가 360 cm³일 때, 이 입체도형의 높이를 구하여라.

높이를
$$h$$
 라 하면 $6 \times 8 \times \frac{1}{7} \times h = 3$

$$6 \times 8 \times \frac{1}{2} \times h = 360$$

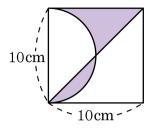
$$\therefore h = 15 \text{ (cm)}$$

17. 다음 그림과 같이 밑면은 정사각형이고 옆 면은 모두 합동인 사다리꼴로 되어 있는 사 각뿔대의 부피는?

- ① $72 \,\mathrm{cm}^3$ ② $81 \,\mathrm{cm}^3$
- $3 104 \,\mathrm{cm}^3$ $4 164 \,\mathrm{cm}^3$ $5 168 \,\mathrm{cm}^3$

2cm

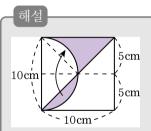
전체부피에서 잘린 부피를 뺀다.
$$\frac{1}{3} \times 8 \times 8 \times 8 - \frac{1}{3} \times 2 \times 2 \times 2 = 168 \text{ (cm}^3\text{)}$$


8cm

2 cm

- 18. 다음 설명 중에서 옳지 않은 것을 모두 고르면?
 - ① 모든 내각의 크기가 같은 다각형을 정다각형이라고 한다.
 - ② 구각형의 모든 대각선의 개수는 27 개이다.
 - ③ 원의 현 중에서 가장 긴 것은 지름이다.
 - ④ 한 원에서 중심각의 크기와 활꼴의 넓이는 정비례한다.
 - ⑤ 한 원에서 현의 길이가 같으면 대응하는 부채꼴의 넓이도 같다.

- ① 정다각형은 모든 변의 길이가 같고 모든 내각의 크기가 같은 다각형이다.
- ④ 한 원에서 중심각의 크기와 활꼴의 넓이는 정비례하지 않는다.

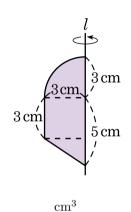

19. 다음 그림과 같은 도형에서 색칠한 부분의 넓이를 구하여라.

▶ 답:

 $\underline{\mathrm{cm}^2}$

정답: 25 cm²

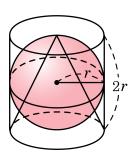
색칠한 부분을 옮기면 밑변은 10cm 이고 높이는 5cm 인 삼각형 의 넓이와 같다.


(넓이) = $10 \times 5 \times \frac{1}{2} = 25 \text{ (cm}^2\text{)}$

20. 면의 수가 가장 많은 정다면체의 모서리의 개수를 a 개, 면의 수가 가장 적은 정다면체의 꼭짓점의 개수를 b 개라 할 때, a - b의 값을 구하여라.

정다면체 중에서 면의 수가 20 개로 가장 많은 정이십면체의 모서리의 수는 30 개 이므로 a=30 이고, 면의 수가 4 개로 가장 적은 정사면체의 꼭짓점의 개수는 4 개이므로 b=4이다. 따라서 a-b=30-4=26이다.

21. 다음 도형을 직선 l 을 회전축으로 하여 회전시켰을 때, 생기는 입체 도형의 부피를 구하여라.


해설
$$(부피) = (반구의 부피) + (원기둥의 부피) + (원뿔의 부피)$$

$$= \frac{1}{2} \times \frac{4}{3}\pi \times 3^3 + \pi \times 3^2 \times 3$$

$$+ \frac{1}{3} \times \pi \times 3^2 \times 2$$

$$= 18\pi + 27\pi + 6\pi = 51\pi \text{(m}^3\text{)}$$

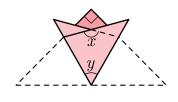
22. 다음 그림에서 원뿔, 구, 원기둥의 부피의 비로 옳은 것은?

① 1:1:3

- ② 2:3:5
- 32:3:4

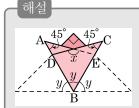
④ 1:2:4

 \bigcirc 1:2:3


(원뿔의 부피) =
$$\frac{1}{3} \times \pi r^2 \times 2r = \frac{2}{3}\pi r^3$$

$$(구의 부피) = \frac{4}{3}\pi r^3$$

(원기둥의 부피) =
$$\pi r^2 \times 2r = 2\pi r^3$$


$$\therefore \frac{2}{3} : \frac{4}{3} : 2 = 2 : 4 : 6 = 1 : 2 : 3$$

23. 다음은 직각이등변삼각형을 양쪽으로 대칭이 되는 선을 따라 두 번 접은 모양이다. $\angle x + \angle y$ 의 값을 구하여라.

답:

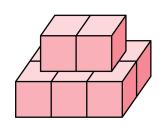
➢ 정답 : 210°

서로 대칭되는 선을 따라 두 번 접었으므로 y는 180°의 삼등분선 중 하나인 60°이다. \triangle ABE의 외각 \angle AEC = 105°이므로 \angle BEA = 75°이고, \triangle BCD 의 외각 \angle ADC = 105°이므로 \angle CDB = 75°이다.

$$\therefore \angle x + \angle y = 360^{\circ} - (75^{\circ} + 75^{\circ}) = 210^{\circ}$$

24. 정육면체의 각 모서리를 사등분한 점들을 이어서 만들어지는 8 개의 삼각뿔을 잘라내고 남은 도형의 꼭짓점의 개수와 모서리의 개수의 차를 구하여라.

정육면체의 한 꼭짓점마다 꼭짓점은 3 개가 새로 생기고 하나가


답:

▷ 정답: 12

없어져서 2 개씩 늘어나고, 모서리는 3 개씩 늘어나므로 $v = 8 + 2 \times 8 = 24$

 $e = 12 + 3 \times 8 = 36$ $\therefore e - v = 12$

25. 다음은 한 모서리의 길이가 1 인 정육면체 블록 8 개를 쌓아 만든 도형이다. 이 도형의 겉넓이를 구하여라.

답:

➢ 정답: 28

해설

(겉넓이) = (정사각형 24개의 넓이) + (정사각형 6개의 넓이) - (정사각형 2개의 넓이)

정사각형 1 개의 넓이는 1 이므로

24 + 6 - 2 = 28